• Title/Summary/Keyword: order structure

Search Result 13,144, Processing Time 0.043 seconds

Structure Identification of a Neuro-Fuzzy Model Can Reduce Inconsistency of Its Rulebase

  • Wang, Bo-Hyeun;Cho, Hyun-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.276-283
    • /
    • 2007
  • It has been shown that the structure identification of a neuro-fuzzy model improves their accuracy performances in a various modeling problems. In this paper, we claim that the structure identification of a neuro-fuzzy model can also reduce the degree of inconsistency of its fuzzy rulebase. Thus, the resulting neuro-fuzzy model serves as more like a structured knowledge representation scheme. For this, we briefly review a structure identification method of a neuro-fuzzy model and propose a systematic method to measure inconsistency of a fuzzy rulebase. The proposed method is applied to problems or fuzzy system reproduction and nonlinear system modeling in order to validate our claim.

System Identification of Building Structure using Subspace Identification Method (부분공간법에 의한 건축구조물의 동특성 식별)

  • Bae, Gi-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.4 s.10
    • /
    • pp.53-58
    • /
    • 2003
  • In order to control seismic responses of building structures effectively and stably, it is very important to estimate the dynamic characteristics of target structure exactly based on input-output signal data. In this paper, it is shown that Subspace Identification Method is able to be applied effectively to system identification of building structures. To verify the efficiency of Subspace Identification Method, the vibration experiments were conducted on a specimen structure which is a 5-storied building structure model consisted of H-shaped steel beam, and the simulated seismic responses of the identified structure model were compared with the observed ones under the same excitation. It was observed that the experimental results coincided with the analyzed ones proposed in this paper.

  • PDF

Optimal Design of Integrated Control System Considering Soil-Structure Interaction (지반-구조물 상호작용을 고려한 복합제어시스템의 최적설계)

  • Park, Kwan-Soon;Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.57-64
    • /
    • 2012
  • For the vibration control of earthquake-excited buildings, an optimal design method of integrated control system considering soil-structure interaction is studied in this paper. Interaction between soils and the base of the building is simply modeled as lumped parameters and equations of motion are derived. The equations of motion are transformed into the state space equations and the probabilistic excitations such as Kanai-Tajumi power spectral density function is introduced. Then an optimization problem is formulated as finding hybrid or integrated control systems which minimizes the stochastic responses of the building structure for given constraints. In order to investigate the feasibility of the optimization method, an example design and numerical simulations are performed with tenstory building. Finally, numerical results are compared with a conventional design case that soil-structure interaction is not considered.

3 DOFs bridge-vessel collision model considering with rotation behaviors of the vessel (선박의 회전거동을 고려한 3자유도 충돌모델)

  • Lee, Gye-Hee;Lee, Seong-Lo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.380-385
    • /
    • 2008
  • 3 DOFs model for the collision analysis of a bridge super-structure and a super-structure of the navigating vessels were proposed and analyzed. The collision event between the super-structure of vessel and the super-structure of bridge are different from the normal collision event that collided at sub-structure of bridge. Because of its moment arm, the stability force of vessel could affect to the collision behaviors. To consider this effect, 3 DOFs model including two translation DOFs and one rotational DOF were introduced. The restoration forces of the collision system were considered as nonlinear springs. The equations of motion were derived if form of differential equations and numerically solved by 4th order Runge-Kutta method. The accuracy and the feasibility of this model were verified by the numerical example with parameter of moment arm length.

  • PDF

Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods

  • Motezaker, Mohsen;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.745-753
    • /
    • 2017
  • Dynamic analysis of a concrete pipes armed with Silica ($SiO_2$) nanoparticles subjected to earthquake load is presented. The structure is modeled with first order shear deformation theory (FSDT) of cylindrical shells. Mori-Tanaka approach is applied for obtaining the equivalent material properties of the structure considering agglomeration effects. Based on energy method and Hamilton's principle, the motion equations are derived. Utilizing the harmonic differential quadrature method (HDQM) and Newmark method, the dynamic displacement of the structure is calculated for the Kobe earthquake. The effects of different parameters such as geometrical parameters of pipe, boundary conditions, $SiO_2$ volume percent and agglomeration are shown on the dynamic response of the structure. The results indicate that reinforcing the concrete pipes by $SiO_2$ nanoparticles leads to a reduction in the displacement of the structure during an earthquake.

A study on Emotion Structure of Online Game Character (온라인 게임 내 캐릭터의 정서구조 연구)

  • Park, Yiseul;Ko, Ilju;Park, Junhyoung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.3
    • /
    • pp.167-179
    • /
    • 2016
  • Online games, by a massive influx of many players, it has diverse situations in which emotion is generated. Emotion plays an important role that helps players to interact and immerse in game. In the previous games, simple structures are used to express emotion. By increasing the user's needs of emotion in the game, it is necessary to structure a various type of emotion. In this paper, the game components were classified as background, object, and character in order to analyze emotion structurally in game. We defined how to use the rule of emotion, and applied to League of legend, Cyphers and World of Warcraft which belong to the AOS genre. The AOS game is well-suited for analyzing emotion structure, because a various emotional changes and situations can arise in the game. Through this paper, it was discovered similarities emotion to be used in online games. It is expected to generalize the emotion in the game by analyzing the emotional structure of more games in future.

Study on the Self Diagnosis of Reinforced Concrete Beam Retrofitted by Composite Materials with Optical Fiber Sensors (광섬유 센서를 이용한 복합재료로 보수보강된 철근콘크리트 보의 자기진단 기법개발)

  • 김기수;신영수;김종우;전재홍;조윤범
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.57-60
    • /
    • 2001
  • In order to extend the life time of building and civil infra-structure, nowadays, patch type fibrous composite materials are widely used. Retrofitted concrete columns and beams gain the stiffness and strength, but they lose toughness and show brittle failure. Usually, the cracks of concrete structures are visible with naked eyes and the status of the structure in the life cycle is estimated with visible inspection. After retrofitting of the structure, crack visibility is blocked by retrofitted composite materials. Therefore, structural monitoring after retrofitting is indispensible and self diagnosis method with optical fiber sensor is very useful. In this paper, We try to detect peel out effect and find the strain difference between main structure and retrofitting patch material when they separate each other.

  • PDF

복합조직의 파괴거동과 파괴혁성에 관한 연구 I

  • ;;Kim, Kyu Seng
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.2
    • /
    • pp.110-121
    • /
    • 1981
  • In order to study on the fracture behavior and the fracture thoughness of combined structure, the specimens, structural steel (SM28C) and 6:4 brass are annealed for ductility and investigated for the befavior of fracture and the absorbed energy at the variation of the impact velocity. The results obtained by this study are as follows: (1)The maximum load increases with the impact velocity, but in the condition of constant impact velocity it decreases as the ductility increases. (2)The absorbed energy increases with the impact velocity, but in the condition of constant impact velocity it is constant as the ductility increases. (3)In the case of the combined structure of peralite and ferrite, the microcracks initiates and propagates mainly in the ferrite structure intergranular in accompany with the slip, and the slip concentration phenomena occur in the boundary of pearlite structure However, in case of the combined structure of .alpha. and ..betha. phase, the microcracks initiates and propagares mainly in the .alpha. phase intergranularly, and slip concentration phenomena not ocur in the boundary of .betha. phase.

A Study on Part Deformation by Strand Spacing Change in Support Structure of Stereolithography (광조형의 지지대 구조에서 Strand 간격 변화에 대한 파트형상 변형에 관한 연구)

  • Ahn D.K.;Ha Yeong-Myeong;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.753-756
    • /
    • 2005
  • Rapid prototyping (RP) technologies are mainly performed by layered manufacturing (LM) process which manufactures 3D physical objects by depositing 2D sections in a direction. Thus, deformations are apt to occur in overhanging area of the RP processed part. Also, excessive adhesion between part and platform of the RP apparatus is generated. In order to prevent these problems, most of the RP technologies adopt support structure. Main element to support a part in the support structure is strand. In actual field, however, the number of strand is determined by the software operating reference guide or RP system operator's experience. In this paper, a methodology to determine the optimal strand spacing is presented through experiments and measurements for the SL part deformation by change of strand spacing and part weight in the support structure of the stereolithography.

  • PDF

Dynamic Interaction of Waves with a Moored Structure (계류된 구조물에 작용하는 파도의 동적작용에 대하여)

  • Kim, Chang-Je
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.94-102
    • /
    • 1992
  • This paper presents the method of numerical analysis concerned with the hydropdynamic forces and moments of the floating bodies exerted by waves. The analytic methods of hydrodynamic wave forces and moments for large volume structures are generally classified into four categories ; the strip method, the boundary element method, the finite element method, and the potential matching method. In the case of the comparatively large structures, diffraction theory can be applied. However, there are no application limits of diffraction theory which have been known concerning with the analytic method of the rectangular structures. In this paper, the two-dimensional B.E.M. is treated for a moored small rectangular structure in order to evaluate applicability of diffraction theory. Numerical calculation is carried out for the structure. The results are compared with some other ones for verification. The result shows that diffraction theory is applicable to structures smaller than 0.15 in the ratio of the representative structure length d to wave length L for rectangular ones.

  • PDF