• Title/Summary/Keyword: order parameter

Search Result 3,818, Processing Time 0.035 seconds

A Heuristic Approach Solving for the Complex Design with Precedence Constraints in Concurrent Engineering (복합설계를 위한 동시공학적 접근방법)

  • Cho, Moon-Soo;Kim, Chang-Yeong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.2
    • /
    • pp.185-197
    • /
    • 1998
  • Engineering design involves the specification of many variables that define a product, how it is made, and how it behaves. Before some variables can be determined, other variables must first be known or assumed. This fact implies a precedence order of the variables, and of the tasks of determining these variable consequently. Moreover, design of complex systems may involve a large number of design activities. In this paper, the activity-activity incidence matrix is considered as a representation of design activity analysis which mainly focuses on the precedence constraint. In order to analyze the activity-activity incidence matrix, a heuristic algorithm is proposed, which transforms an activity-activity, parameter-formula, and parameter-parameter incidence matrix into a lower triangular form. The analysis of the structured matrices can not only significantly reduce the overall project complexity by reorganizing few critical tasks in practice, but also aims at obtaining shorter times considering the solution structure by exploring concurrency.

  • PDF

Development of Optimization Methodology for Laser Welding Process Automation Using Neural Network Model and Objective Function (레이저 용접공정의 자동화를 위한 신경망 모델과 목적함수를 이용한 최적화 기법 개발)

  • Park, Young-Whan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.123-130
    • /
    • 2006
  • In manufacturing, process automation and parameter optimization are required in order to improve productivity. Especially in welding process, productivity and weldablity should be considered to determine the process parameter. In this paper, optimization methodology was proposed to determine the welding conditions using the objective function in terms of productivity and weldablity. In order to conduct this, welding experiments were carried out. Tensile test was performed to evaluate the weldability. Neural network model to estimate tensile strength using the laser power, welding speed, and wire feed rate was developed. Objective function was defined using the normalized tensile strength which represented the weldablilty and welding speed and wire feed rate which represented the productivity. The optimal welding parameters which maximized the objective function were determined.

Smart analysis of doubly curved piezoelectric nano shells: Electrical and mechanical buckling analysis

  • Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.471-486
    • /
    • 2020
  • Stability analysis of three-layered piezoelectric doubly curved nano shell with accounting size dependency is performed in this paper based on first order shear deformation theory and curvilinear coordinate system relations. The elastic core is integrated with sensor and actuator layers subjected to applied electric potentials. The principle of virtual work is employed for derivation of governing equations of stability. The critical electrical and mechanical buckling loads are evaluated in terms of important parameters of the problem such as size-dependent parameter, two principle angle of doubly curved shell and two parameters of Pasternak's foundation. One can conclude that mechanical buckling loads are decreased with increase of nonlocal parameter while the electrical buckling loads are increased.

서브마이크론 MOSFET의 파라메터 추출 및 소자 특성 (1)

  • 서용진;장의구
    • Electrical & Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.107-116
    • /
    • 1994
  • In the manufacturing of VLSI circuits, variations of device characteristics due to the slight differences in process parameters drastically aggravate the performances of fabricated devices. Therefore, it is very important to establish optimal process conditions in order to minimize deviations of device characteristics. In this paper, we used one-dimensional process simulator, SUPREM-II, and two dimensional device simulator, MINIMOS 4.0 in order to extract optimal process parameter which can minimize changes of the device characteristics caused by process parameter variation in the case of short channel nMOSFET and pMOSFET device. From this simulation, we have derived the dependence relations between process parameters and device characteristics. Here, we have suggested a method to extract process parameters from design trend curve(DTC) obtained by these dependence relations. And we have discussed short channel effects and device limitations by scaling down MOSFET dimensions.

  • PDF

A Study on the Performance Improvement of a Nonlinear Fuzzy PID Controller (비선형 퍼지 PID 제어기의 성능 개선에 관한 연구)

  • 김인환;이병결;김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.852-861
    • /
    • 2003
  • In this paper, in order to improve the disadvantages of the fixed design-parameter fuzzy PID controller. a new fuzzy PID controller named a variable design-parameter fuzzy PID controller is suggested. The main characteristic of the suggested controller is to adjust design-parameters of the controller by comparing magnitudes between fuzzy controller inputs at each sampling time when controller inputs are measured. As a result. all fuzzy input partitioned spaces converge within a time-varying normalization scale. and the resultant PID control action can always be applied precisely regardless of operating input magnitudes. In order to verify the effectiveness of the suggested controller. several a computer simulations for a nonlinear system are executed and the control parameters of the variable design-parameter fuzzy PID controller are throughly analyzed.

A HIGHER ORDER NUMERICAL SCHEME FOR SINGULARLY PERTURBED BURGER-HUXLEY EQUATION

  • Jiwrai, Ram;Mittal, R.C.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.813-829
    • /
    • 2011
  • In this article, we present a numerical scheme for solving singularly perturbed (i.e. highest -order derivative term multiplied by small parameter) Burgers-Huxley equation with appropriate initial and boundary conditions. Most of the traditional methods fail to capture the effect of layer behavior when small parameter tends to zero. The presence of perturbation parameter and nonlinearity in the problem leads to severe difficulties in the solution approximation. To overcome such difficulties the present numerical scheme is constructed. In construction of the numerical scheme, the first step is the dicretization of the time variable using forward difference formula with constant step length. Then, the resulting non linear singularly perturbed semidiscrete problem is linearized using quasi-linearization process. Finally, differential quadrature method is used for space discretization. The error estimate and convergence of the numerical scheme is discussed. A set of numerical experiment is carried out in support of the developed scheme.

Sensorless Vector Control of Induction Motor using Sliding Observer (슬라이딩 관측기를 이용한 유도전동기의 센서리스 벡터제어)

  • Park, J.H.;Kim, G.H.;Cho, Y.K.;Kim, C.S.;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1922-1924
    • /
    • 1998
  • In this paper, the robust vector control method of Induction Motor for the purpose of improving the system performance deterioration caused by parameter variations is proposed. The full order state observer estimates the stator current and the rotor flux by using the state prediction of state variables. And, the motor speed is estimated without speed sensor using the full order state observer. Also, the parameter variation is compensate by the Sliding Observer. By using this method, speed sensorless control and current contol with no affection of the parameter variation can be obtained simultaneously.

  • PDF

Application of Bispectral Analysis to Estimate Nonlinear Acoustic Parameter (음향 비선형 파라미터의 추정을 위한 바이스펙트럼 해석법의 적용)

  • Kim, K.C.;Jhang, K.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.85-92
    • /
    • 1999
  • The fact that material degradation can be evaluated by measuring nonlinear acoustic effect has been proposed by previous studies. The most conventional method to measure nonlinear acoustic effect is to measure the absolute magnitude of fundamental and $2^{nd}$ order harmonic frequency component in the propagated ultrasonic wave. For this aim, power spectral analysis technique has been used widely. However, the power spectral analysis has fatal disadvantage that the gaussian additive noise superimposed in the wave signal remains in the power spectrum domain. Moreover, the magnitude of $2^{nd}$ order harmonic frequency component generated by nonlinear effect is so small that it may be suppressed by the noise remained in the power spectrum. In order to overcome this problem, this paper proposes an alternative method using bispectrum analysis, which can reduce the effect of addictive gaussian noise and. the nonlinear parameter can be obtained more stably. Simulations showed that the proposed method can obtain the value of nonlinear parameter near to the true value in the case of low SNR signal. Also, in order to confirm the usefulness of our method in actual case, we compared the nonlinear parameter obtained by using both of power spectral and bispectral analysis for several specimen intentionally degraded by fatigue load.

  • PDF

Thermal, electrical and mechanical buckling loads of sandwich nano-beams made of FG-CNTRC resting on Pasternak's foundation based on higher order shear deformation theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad;Arani, M.R. Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.439-455
    • /
    • 2019
  • This research deals with thermo-electro-mechanical buckling analysis of the sandwich nano-beams with face-sheets made of functionally graded carbon nano-tubes reinforcement composite (FG-CNTRC) based on the nonlocal strain gradient elasticity theory (NSGET) considering various higher-order shear deformation beam theories (HSDBT). The sandwich nano-beam with FG-CNTRC face-sheets is subjected to thermal and electrical loads while is resting on Pasternak's foundation. It is assumed that the material properties of the face-sheets change continuously along the thickness direction according to different patterns for CNTs distribution. In order to include coupling of strain and electrical field in equation of motion, the nonlocal non-classical nano-beam model contains piezoelectric effect. The governing equations of motion are derived using Hamilton principle based on HSDBTs and NSGET. The differential quadrature method (DQM) is used to calculate the mechanical buckling loads of sandwich nano-beam as well as critical voltage and temperature rising. After verification with validated reference, comprehensive numerical results are presented to investigate the influence of important parameters such as various HSDBTs, length scale parameter (strain gradient parameter), the nonlocal parameter, the CNTs volume fraction, Pasternak's foundation coefficients, various boundary conditions, the CNTs efficiency parameter and geometric dimensions on the buckling behaviors of FG sandwich nano-beam. The numerical results indicate that, the amounts of the mechanical critical load calculated by PSDBT and TSDBT approximately have same values as well as ESDBT and ASDBT. Also, it is worthy noted that buckling load calculated by aforementioned theories is nearly smaller than buckling load estimated by FSDBT. Also, similar aforementioned structure is used to building the nano/micro oscillators.