• Title/Summary/Keyword: order function

Search Result 10,180, Processing Time 0.033 seconds

Development of the Optimization Design Module of a Brake System (제동 장치 최적 설계 모듈 개발)

  • Jung, Sung-Pil;Park, Tae-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.166-171
    • /
    • 2008
  • In this paper, the optimization design module for the brake system of a vehicle is developed. As using this module, design variables, that minimize an object function and satisfy nonlinear constraint conditions, can be found easily. Before an optimization is operated, Plackett-Burman design, one of the factorial design methods, is used to choose the design variables which affect a response function significantly. Using the response surface analysis, second order recursive model function, which informs a relation between design variables and response function, is estimated. In order to verify the reliability of the model function, analysis of variances(ANOVA) table is used. The value of design variables which minimize the model function and satisfy the constraint conditions is predicted through Sequential Quadratic-Programming (SQP) method. As applying the above procedure to a real vehicle simulation model and comparing the values of object functions of a current and optimized system, the optimization results are verified.

A Study on the Kinematics of Ocean Waves by Gravity Wave Theory and Stream Function Method (해양파(海洋波)의 운동학(運動學)에 대한 중력파이론(重力波理論)과 Steam Function Method의 비교연구(比較硏究))

  • Y.K.,Bang;I.H.,Chang;H.S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.2
    • /
    • pp.33-39
    • /
    • 1982
  • It is one of the basic problems of naval architecture and ocean engineering how to describe the wave kinematics normally under the assumption of an ideal fluid. At present, there are many wave theories available for design purposes. These can be classified into two groups: One is the analytic theory and the other is the numerical theory. This paper briefly introduces the stream function method of R.G. Dean which belongs to the latter group and shows its numerical evaluations exemplified for two cases: One is applied to observed waves and the other is for design waves. In the former case, the wave profiles are calculated by the stream function method and compared with those of the observed waves and also with the results of R.G. Dean. They show good agreement. In the latter case, the wave kinematics and wave loads on a column of diameter 1m are calculated by the stream function method and these are compared with those resulted from the 5th-order gravity wave theory. As a result of comparison the values by the stream function method are slightly larger than those by the 5th-order gravity wave theory but the difference are negligible. From this it is concluded that the stream function method is very useful. And as characteristics of the numerical theories, the stream function method of R.G. Dean can be easily extended to the higher order terms and can include easily the current velocity and the pressure distribution on the free surface. In addition, when the data of observed wave profile are given, this method can reproduced the observed wave profile as closely as possible so that this method seems to describe the ocean wave more realistically. And from standpoint of a mathematical principle the stream function method exactly satisfies the kinematic free-surface boundary condition.

  • PDF

Study on Prediction Method for Spring-Induced Tension Responses of TLP (Springing을 고려한 TLP의 장력 예측 기법 연구)

  • Kim, Taeyoung;Kim, Yonghwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.396-403
    • /
    • 2014
  • This paper considered the prediction of the tension force in the design of a TLP tendon, particularly focusing on the springing problem. Springing is an important parameter that exerts a large tension in special cases. It is a nonlinear phenomenon and requires the 2nd-order wave loads to solve. In this paper, a new prediction method for springing and the resultant extreme tension on the tendon of a TLP is introduced. Using the 2nd-order response function computed using the commercial program WADAM, the probability density function of the 2nd-order tension is obtained from an eigenvalue analysis using a quadratic transfer function and sea spectra. A new method is then suggested to predict the extreme tension loads with respect to the number of occurrences. It is shown that the PDF suggested in this study properly predicts the extreme tension in comparison with the time histories of the 2nd-order tension. The expected tension force is larger than that from a linear analysis in the same time windows. This supports the use of the present method to predict the tension due to springing.

An Evaluation of the Second-order Approximation Method for Engineering Optimization (최적설계시 이차근사법의 수치성능 평가에 관한 연구)

  • 박영선;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.236-247
    • /
    • 1992
  • Optimization has been developed to minimize the cost function while satisfying constraints. Nonlinear Programming method is used as a tool for the optimization. Usually, cost and constraint function calculations are required in the engineering applications, but those calculations are extremely expensive. Especially, the function and sensitivity analyses cause a bottleneck in structural optimization which utilizes the Finite Element Method. Also, when the functions are quite noisy, the informations do not carry out proper role in the optimization process. An algorithm called "Second-order Approximation Method" has been proposed to overcome the difficulties recently. The cost and constraint functions are approximated by the second-order Taylor series expansion on a nominal points in the algorithm. An optimal design problem is defined with the approximated functions and the approximated problem is solved by a nonlinear programming numerical algorithm. The solution is included in a candidate point set which is evaluated for a new nominal point. Since the functions are approximated only by the function values, sensitivity informations are not needed. One-dimensional line search is unnecessary due to the fact that the nonlinear algorithm handles the approximated functions. In this research, the method is analyzed and the performance is evaluated. Several mathematical problems are created and some standard engineering problems are selected for the evaluation. Through numerical results, applicabilities of the algorithm to large scale and complex problems are presented.presented.

CIRCULAR UNITS IN A BICYCLIC FUNCTION FIELD

  • Ahn, Jaehyun;Jung, Hwanyup
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • For a real subextension of some cyclotomic function field with a non-cyclic Galois group order $l^2$, l being a prime different from the characteristic of function field, we compute the index of the Sinnott group of circular units.

  • PDF

The Relationship of Complexity and Order in Determining Aesthetic Preference in Architectural Form

  • Whang, Hee-Joon
    • Architectural research
    • /
    • v.13 no.4
    • /
    • pp.19-30
    • /
    • 2011
  • This investigation, based on empirical research, examined the role of complexity and order in the aesthetic experience of architectural forms. The basic assumption of this study was that perception in architectural form is a process of interpreting a pattern in a reductive way. Thus, perceptual arousal is not determined by the absolute complexity of a configuration. Rather, the actual perceived complexity is a function of the organization of the system (order). In addition, complexity and order were defined and categorized into four variables according to their significant characteristics; simple order, complex order, random complexity, and lawful complexity. The series of experiments confirmed that there is a point on the psychological complexity dimension which is optimal. By demonstrating that consensual and individual aesthetic preference can be measured to have a unimodal function of relationship with complexity, the results of the experiments indicated that complexity and orderliness are effective design factors for enhancing aesthetics of a building facade. This investigation offered a conceptual framework that relates the physical (architectural form) and psychological factors (complexity and order) operating in the aesthetic experience of building facades.

The Weight Function in BIRQ Estimator for the AR(1) Model with Additive Outliers

  • Jung Byoung Cheol;Han Sang Moon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.129-134
    • /
    • 2004
  • In this study, we investigate the effects of the weight function in the bounded influence regression quantile (BIRQ) estimator for the AR(1) model with additive outliers. In order to down-weight the outliers of X-axis, the Mallows' (1973) weight function has been commonly used in the BIRQ estimator. However, in our Monte Carlo study, the BIRQ estimator using the Tukey's bisquare weight function shows less MSE and bias than that of using the Mallows' weight function or Huber's weight function.

  • PDF

COMPLETE MONOTONICITY OF A DIFFERENCE BETWEEN THE EXPONENTIAL AND TRIGAMMA FUNCTIONS

  • Qi, Feng;Zhang, Xiao-Jing
    • The Pure and Applied Mathematics
    • /
    • v.21 no.2
    • /
    • pp.141-145
    • /
    • 2014
  • In the paper, by directly verifying an inequality which gives a lower bound for the first order modified Bessel function of the first kind, the authors supply a new proof for the complete monotonicity of a difference between the exponential function $e^{1/t}$ and the trigamma function ${\psi}^{\prime}(t)$ on (0, ${\infty}$).

Adaptive High-order Variation De-noising Method for Edge Detection with Wavelet Coefficients

  • Chenghua Liu;Anhong Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.412-434
    • /
    • 2023
  • This study discusses the high-order diffusion method in the wavelet domain. It aims to improve the edge protection capability of the high-order diffusion method using wavelet coefficients that can reflect image information. During the first step of the proposed diffusion method, the wavelet packet decomposition is a more refined decomposition method that can extract the texture and structure information of the image at different resolution levels. The high-frequency wavelet coefficients are then used to construct the edge detection function. Subsequently, because accurate wavelet coefficients can more accurately reflect the edges and details of the image information, by introducing the idea of state weight, a scheme for recovering wavelet coefficients is proposed. Finally, the edge detection function is constructed by the module of the wavelet coefficients to guide high-order diffusion, the denoised image is obtained. The experimental results showed that the method presented in this study improves the denoising ability of the high-order diffusion model, and the edge protection index (SSIM) outperforms the main methods, including the block matching and 3D collaborative filtering (BM3D) and the deep learning-based image processing methods. For images with rich textural details, the present method improves the clarity of the obtained images and the completeness of the edges, demonstrating its advantages in denoising and edge protection.

Implementation of Multi-function Sensor Module for Vessel Safety Monitoring (어선안전 모니터링 다기능 센서 모듈의 구현)

  • Choi, Jo-Cheon;Cho, Seung-Il;Kim, Seong-Kweon;Kim, Jai-Hyun;Choi, Gyoo-Seok;Cha, Jea-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.135-139
    • /
    • 2009
  • In order to cope with safety issues regarding fisher vessels, a device is required with the real-time monitoring for the safety and risk factors for a capability of informing and alerting function. In embedded modules, there is a trouble that we should design device drivers and application programs for usage of the multi-function sensors in order to detect risk factors. In this paper, we designed hardware circuit and implemented control program of the sensor part using PIC18F, in order to control and process the input and output data of multi-function sensors without device drivers and application programs. We confirmed the operation of multi-function sensor module to generate output data according to sensor operation.

  • PDF