• Title/Summary/Keyword: orbit

Search Result 2,369, Processing Time 0.034 seconds

GPS Satellite Orbit Prediction Based on Unscented Kalman Filter

  • Zheng, Zuoya;Chen, Yongqi;Xiushan, Lu;Zhixing, Du
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.191-196
    • /
    • 2006
  • In GPS Positioning, the error of satellite orbit will affect user's position accuracy directly, it is important to determine the satellite orbit precise. The real-time orbit is needed in kinematic GPS positioning, the precise GPS orbit from IGS would be delayed long time, so orbit prediction is key to real-time kinematic positioning. We analyze the GPS predicted ephemeris, on the base of comparison of EKF and UKF, a new orbit prediction method is put forward based on UKF in this paper, the result shows that UKF improves the orbit predicted precision and stability. It offers a new method for others satellites orbit determination as Galileo, and so on.

  • PDF

Analysis on Frozen & Sun-synchronous Orbit Conditions at the Moon

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Lee, Joo-Hee;Sim, Eun-Sup
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.24.4-24.4
    • /
    • 2011
  • Frozen orbit concept is very useful in designing particular mission orbits including the Sun-synchronous and minimum altitude variation orbits. In this work, variety of frozen and Sun-synchronous orbit conditions around the Moon is investigated and analyzed. The first two zonal harmonics of the Moon, J2 and J3, are considered to determine mean orbital elements to be a frozen orbit. To check the long-term behavior of a frozen orbit, formerly developed YonSei Precise Lunar Orbit Propagator (YSPLOP) is used. First, frozen orbit solutions without conditions to be the Sun-synchronous orbit is investigated. Various mean semi-major axes having between ranges from 1,788 km to 1,938 km with inclinations from 30 deg to 150 deg are considered. It is found that a polar orbit (90 deg of inclination) having 100 km of altitude requires the orbital eccentricity of about 0.01975 for a frozen orbit. Also, mean apolune and perilune altitudes for this case is about 136.301 km and 63.694 km, respectively. Second, frozen orbit solutions with additional condition to be the Sun-synchronous orbit is investigated. It is discovered that orbital inclinations are increased from 138.223 deg to 171.553 deg when mean altitude ranged from 50 km to 200 km. For the most usual mission altitude at the Moon (100 km), the Sun-synchronous orbit condition is satisfied with the eccentricity of 0.01124 and 145.235 deg of inclination. For this case, mean apolune and perilune altitudes are found to be about 120.677 km and 79.323 km, respectively. The results analyzed in this work could be useful to design a preliminary mapping orbit as well as to estimate basic on-board payloads' system requirements, for a future Korea's lunar orbiter mission. Other detailed perturbative effects should be considered in the further study, to analyze more accurate frozen orbit conditions at the Moon.

  • PDF

A RELATIVE REIDEMEISTER ORBIT NUMBER

  • Lee, Seoung-Ho;Yoon, Yeon-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.193-209
    • /
    • 2006
  • The Reidemeister orbit set plays a crucial role in the Nielsen type theory of periodic orbits, much as the Reidemeister set does in Nielsen fixed point theory. In this paper, extending Cardona and Wong's work on relative Reidemeister numbers, we show that the Reidemeister orbit numbers can be used to calculate the relative essential orbit numbers. We also apply the relative Reidemeister orbit number to study periodic orbits of fibre preserving maps.

IRREDUCIBLE REIDEMEISTER ORBIT SETS

  • Lee, Seoung Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.721-734
    • /
    • 2014
  • The Reidemeister orbit set plays a crucial role in the Nielsen type theory of periodic orbits, much as the Reidemeister set does in Nielsen fixed point theory. Extending our work on Reidemeister orbit sets, we obtain algebraic results such as addition formulae for irreducible Reidemeister orbit sets. Similar formulae for Nielsen type irreducible essential orbit numbers are also proved for fibre preserving maps.

Study of Quasi Zenith Satellite Orbit and Navigation Messages (준천정 위성 궤도 특성 및 항법정보 연구)

  • Kim, Jeong-Rae
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • One of the key elements for developing GNSS (Global Navigation Satellite Systems) is the comprehensive analysis of GNSS satellite orbit including the capabilities to generate precision navigation message. The orbit characteristics of Japan's own GNSS system, called QZSS (Quasi Zenith Satellite System) is analyzed and its navigation message, which includes orbit elements and correction terms, is investigated. QZSS-type orbit simulations were performed using a precision orbit integrator in order to analyze the effect of perturbation forces, e.g. gravity, Moon, Sun, etc., on the orbit variation. A preliminary algorithm for creating orbit element corrections was developed and its accuracy is evaluated with the simulation data.

  • PDF

ESTIMATION OF A GENERAL ALONG-TRACK ACCELERATION IN THE KOMPSAT-1 ORBIT

  • Lee, Byoung-Sun;Lee, Jeong-Sook;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.2
    • /
    • pp.89-96
    • /
    • 2002
  • General along-track acceleration was estimated in the KOMPSAT-1 orbit determination process. Several sets of the atmospheric drag and solar radiation pressure coefficients were also derived with the different spacecraft area. State vectors in the orbit determination with the different spacecraft area were compared in the time frame. The orbit prediction using the estimated coefficients was performed and compared with the orbit determination results. The orbit prediction with the different general acceleration values was also carried out for the comparison

통신위성에 작용하는 섭동력의 영향평가와 궤도결정

  • 박수홍;조겸래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.200-205
    • /
    • 1992
  • This study concerns about the orbit prediction and orbit determination of Korean future connumication satellite, called "Moogunghwa" , which will be motioned in the geo-stationary orbit. Perturbation effect on the satellite orbit due to nonspherical term, lunar and solar gravity, drag force of the atmospher, and solar radiation pressure was investigated. Cowell's method is used for orbit prediction. Orbit determination was performed by using Extended Kalman Filter which is suitable for real-time orbit determination. The result shows that the chacteristics of the satellite orbit has east-west and south-north drift. So the periodic control time and control value in the view of the periodic of error can be provided. The orbit determination demonstrated the effectiveness since the convergence performance on the positon and velocity error, and state error standard deviation is reasonable.

A Study on the Station Relocation of the Koreasat (무궁화위성의 궤도재배치에 관한 연구)

  • Lee, Sang-Cherl;Park, Bong-Kyu;Kim, Bang-Yeop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.87-93
    • /
    • 2002
  • In general, station relocation for a geostationary orbit satellite is formulated as a request for moving the spacecraft from its present longitude to the target longitude within a given time interval. The station relocation maneuver is composed of drift orbit insertion maneuver and target orbit insertion maneuver. During station relocation, the satellite orbit is continually influenced by the non-spherical geo-potential. When we plan a maneuver, if we do not consider the influence, the satellite may not be relocate to desired longitude successfully. To solve this problem, we applied the linearised orbit transfer equation to acquire maneuver time and delta-V. Nonlinear simulation for the station relocation of multiple satellites is performed in order to verify the distance between two satellites.

An Analysis of the KOMPSAT-1 Operational Orbit Evolution Over 3 Years (아리랑 1호 임무기간 3년 동안의 궤도변화 분석)

  • Kim,Hae-Dong;Choe,Hae-Jin;Kim,Eun-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.40-50
    • /
    • 2003
  • The operational orbit evolution of the KOMPSAT-l over 3 years was analyzed. During LEOP, four orbit maneuvers were performed to obtain the optimized orbit and eight safe-hold modes happened. The effects of unpredictable occurrence of the safe-hold mode and the highest solar activity on the orbit evolution during the mission life were analyzed. The comparison of orbital elements between long-term predicted orbit and determined orbit from observed data was also performed. The operational orbit started from the optimized one was evolved within the boundary of the designed mission orbit except altitude and it was verified the sun-synchronous orbit was successfully maintained.

Parametric Analysis of the Solar Radiation Pressure Model for Precision GPS Orbit Determination

  • Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.1
    • /
    • pp.55-62
    • /
    • 2017
  • The SRP (Solar Radiation Pressure) model has always been an issue in the dynamic GPS (Global Positioning System) orbit determination. The widely used CODE (Center for Orbit Determination in Europe) model and its variants have nine parameters to estimate the solar radiation pressure from the Sun and to absorb the remaining forces. However, these parameters show a very high correlation with each other and, therefore, only several of them are estimated at most of the IGS (International GNSS Service) analysis centers. In this study, we attempted to numerically verify the correlation between the parameters. For this purpose, a bi-directional, multi-step numerical integrator was developed. The correlation between the SRP parameters was analyzed in terms of post-fit residuals of the orbit. The integrated orbit was fitted to the IGS final orbit as external observations. On top of the parametric analysis of the SRP parameters, we also verified the capabilities of orbit prediction at later time epochs. As a secondary criterion for orbit quality, the positional discontinuity of the daily arcs was also analyzed. The resulting post-fit RMSE (Root-Mean-Squared Error) shows a level of 4.8 mm on average and there is no significant difference between block types. Since the once-per-revolution parameters in the Y-axis are highly correlated with those in the B-axis, the periodic terms in the D- and Y-axis are constrained to zero in order to resolve the correlations. The 6-hr predicted orbit based on the previous day yields about 3 cm or less compared to the IGS final orbit for a week, and reaches up to 6 cm for 24 hours (except for one day). The mean positional discontinuity at the boundary of two 1-day arcs is on the level of 1.4 cm for all non-eclipsing satellites. The developed orbit integrator shows a high performance in statistics of RMSE and positional discontinuity, as well as the separations of the dynamic parameters. In further research, additional verification of the reference frame for the estimated orbit using SLR is necessary to confirm the consistency of the orbit frames.