• Title/Summary/Keyword: optoelectronic device

Search Result 127, Processing Time 0.032 seconds

Inorganic charge transport materials for high reliable perovskite solar cells (고신뢰성 페로브스카이트 태양전지용 무기물 기반 전하전달층)

  • Park, So Jeong;Ji, Su Geun;Kim, Jin Young
    • Ceramist
    • /
    • v.23 no.2
    • /
    • pp.145-165
    • /
    • 2020
  • Halide perovskites are promising photovoltaic materials due to their excellent optoelectronic properties like high absorption coefficient, low exciton binding energy and long diffusion length, and single-junction solar cells consisting of them have shown a high certified efficiency of 25.2%. Despite of high efficiency, perovskite photovoltaics show poor stability under actual operational condition, which is the mostly critical obstacle for commercialization. Given that the stability of the perovskite devices is significantly affected by charge-transporting layers, the use of inorganic charge-transporting layers with better intrinsic stability than the organic counterparts must be beneficial to the enhanced device reliability. In this review article, we summarized a number of studies on the inorganic charge-transporting layers of the perovskite solar cells, especially focusing on their effects on the enhanced device reliability.

Enhanced Photosensitivity in Monolayer MoS2 with PbS Quantum Dots

  • Cho, Sangeun;Jo, Yongcheol;Woo, Hyeonseok;Kim, Jongmin;Kwak, Jungwon;Kim, Hyungsang;Im, Hyunsik
    • Applied Science and Convergence Technology
    • /
    • v.26 no.3
    • /
    • pp.47-49
    • /
    • 2017
  • Photocurrent enhancement has been investigated in monolayer (1L) $MoS_2$ with PbS quantum dots (QDs). A metal-semiconductor-metal (Au-1L $MoS_2$-Au) junction device is fabricated using a standard photolithography method. Considerably improved photo-electrical properties are obtained by coating PbS QDs on the Au-1L $MoS_2$-Au device. Time dependent photoconductivity and current-voltage characteristics are investigated. For the QDs-coated $MoS_2$ device, it is observed that the photocurrent is considerably enhanced and the decay life time becomes longer. We propose that carriers in QDs are excited and transferred to the $MoS_2$ channel under light illumination, improving the photocurrent of the 1L $MoS_2$ channel. Our experimental findings suggest that two-dimensional layered semiconductor materials combined with QDs could be used as building blocks for highly-sensitive optoelectronic detectors including radiation sensors.

유기막 위에 증착된 저온 ITO(Indium Tin Oxide) 박막의 식각특성

  • 김정식;김형종;박준용;배정운;이내응;염근영
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.99-99
    • /
    • 1999
  • 투명전도막인 Ito(Indium Tin Oxide)는 flat panel display 와 solar cell 같은 optoelectronic 이나 microelectronic device에서 널리 이용되어 지고 있다. 현재 상용화되고 있는 거의 대부분의 ITO 박막은 sputtering법에 의해 제조되고 있으나 공정상의 이유로 15$0^{\circ}C$이상의 기판온도가 요구되어진다. 그런, 실제 display device 제조공정에서는 비정질 실리콘 박막이나 유기막 위에 ITO박막을 제작할 필요성이 증대되어 지고 있고, 또한 다른 전자소자에 있어서도 상온 ITO 박막 형성 공정에 대한 필요성이 증대되고 있다. 이러한 이유로 본 실험에서는 IBAE(Ion Beam Assisted Evsporation)을 이용하여 저온 ITO박막을 유기막 위에 증착하는 공정에 대한 연구를 수행하였다. 이렇게 증착된 ITO 박막의 결정성은 비정질이었다. 또한, 모든 display device 제작에는 식각공정이 필수인데 기존에 사용되고 있는 wet etching 법은 등방성 식각특성 때문에 미세 pattern 형성에 부적합?, 따라서 비등방성 식각에 용이한 plasma etching법을 사용하여 저온 증착된 ITO 박막의 식각특성을 알아보았다. 실험에 사용된 식각장비는 자장 강화된 유도결합형 플라즈마 식각장비(MEICP)를 사용하였으며, 13.56MHz의 RF power를 사용하였다. 식각조건으로 source power는 600W~1000W, 기판 bias boltage는 -100V~-250V를 가하였으며, Ar, CH4, O2, H2, BCl3의 식각 gases, 5mTorr~30mTorr의 working pressure 변화 그리고 기판 온도에 따른 식각특성을 관찰하였다. ITO 가 증착된 기판으로는 유기물 중 투명전도성 박막에 기판으로서 사용가능성이 클 것으로 기대되어지는 PET(polyethylene-terephtalate), PC(polycarbonate), 아크릴을 사용하여 기판 변화가 식각특성에 미치는 영향에 대해서 각각 관찰하였다. 식각속도의 측정은 stylus profiler를 이용하여 측정하였으며 식각후에 표면상태는 scanning electron spectroscopy(SEM)을 이용하여 관찰하였다.

  • PDF

Effects of Residual PMMA on Graphene Field-Effect Transistor

  • Jung, J.H.;Kim, D.J.;Sohn, I.Y.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.561-561
    • /
    • 2012
  • Graphene, two dimensional single layer of carbon atoms, has tremendous attention due to its superior property such as fast electron mobility, high thermal conductivity and optical transparency, and also found many applications such as field-effect transistors (FET), energy storage and conversion, optoelectronic device, electromechanical resonators and chemical sensors. Several techniques have been developed to form the graphene. Especially chemical vapor deposition (CVD) is a promising process for the large area graphene. For the electrically isolated devices, the graphene should be transfer to insulated substrate from Cu or Ni. However, transferred graphene has serious drawback due to remaining polymeric residue during transfer process which induces the poor device characteristics by impurity scattering and it interrupts the surface functionalization for the sensor application. In this study, we demonstrate the characteristics of solution-gated FET depending on the removal of polymeric residues. The solution-gated FET is operated by the modulation of the channel conductance by applying a gate potential from a reference electrode via the electrolyte, and it can be used as a chemical sensor. The removal process was achieved by several solvents during the transfer of CVD graphene from a copper foil to a substrate and additional annealing process with H2/Ar environments was carried out. We compare the properties of graphene by Raman spectroscopy, atomic force microscopy(AFM), and X-ray Photoelectron Spectroscopy (XPS) measurements. Effects of residual polymeric materials on the device performance of graphene FET will be discussed in detail.

  • PDF

AC-Based Characterization of Quantum-Dot Light-Emitting Diodes

  • Hwang, Hee-Soo;Lee, Ki-Hun;Park, Chan-Rok;Yang, Heesun;Hwang, Jinha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.466-466
    • /
    • 2013
  • Quantum-dot materials have introduced novel applications in organic light-emitting diodes and solar cells. The size controllability and structure modifications have continuously been upgrading the applicability to optoelectronic and flat-panel displays. In particular, quantum-dot organic light-emitting diodes (QLEDs) are a device driven through the electrical field applied to the electrical diodes. The QLEDs are affected by the constituent materials and the corresponding device structures. Conventionally, the electrical properties are characterized only in terms of dc-based current-voltage characteristics. The dynamic change in light-emitting diodes should be characterized in emitted and non-emitted states. Therefore, the frequency-dependent impedance can offer different information on the electrical performance in QLED. The current work reports an auxiliary information on the electrical and optical features originating from quantum-dot organic light-emitting diodes. The empirical characterizations are discussed towards an experimental tool in optimizing the light-emitting diodes.

  • PDF

Design and Fabrication of InP/InGaAs PIN Photodiode for Horizontally Integrated OEIC's (수평집적형 광전자집적회로를 위한 InP/InGaAs PIN 광다이오드의 설계 및 제작)

  • 여주천;김성준
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.4
    • /
    • pp.38-48
    • /
    • 1992
  • OEIC(Optoelectronic Integrated Circuit)'s can be integrated horizontally or vertically. Horizontal integration approach is, however, more immune to parasitic and more universally applicable. In this paper, a structural modeling, fabrication and characterization of PIN photodiodes which can be used in the horizontal integration are performed. For device modeling, we build a transmission line model from 2-D device simulation, from which lumped model parameters are extracted. The speed limits of the PIN photodiodes can also be calculated under various structural conditions from the model. Thus optimum design of horizontally integrated PIN photodiodes for high speed operation are possible. Such InGaAs/InP PIN photodiodes for long-wavelength communications are fabricated using pit etch, epi growth, planarization, diffusion and metallization processes. Planarization process using both RIE and wet etching and diffusion process using evaporated Zn$_{3}P_{2}$ film are developed. Characterization of the fabricated devices is performed through C-V and I-V measurements. At a reserve bias of 10V, the dark current is less than 5nA and capacitance is about 0.4pF. The calculated bandwidth using the measured series resistance and capacitance is about 4.23GHz.

  • PDF

High Resolution Patternning for Graphene Nanoribbons (GNRs) Using Electro-hydrodynamic Lithography

  • Lee, Su-Ok;Kim, Ha-Nah;Lee, Jae-Jong;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.198-198
    • /
    • 2012
  • Graphene has been the subject of intense study in recent years owing to its good optoelectronic properties, possibility for stretchable electronics, and so on. Especially, many research groups have studied about graphene nanostructures with various sizes and shapes. Graphene needs to be fabricated into useful devices with controllable electrical properties for its successful device applications. However, this been far from satisfaction owing to a lack of reliable pattern transfer techniques. Photolithography, nanowire etching, and electron beam lithography methods are commonly used for construction of graphene patterns, but those techniques have limitations for getting controllable GNRs. We have developed a novel nanoscale pattern transfer technique based on an electro-hydrodynamic lithography providing highly scalable versatile pattern transfer technique viable for industrial applications. This technique was exploited to fabricate nanoscale patterned graphene structures in a predetermined shape on a substrate. FE-SEM, AFM, and Raman microscopy were used to characterize the patterned graphene structures. This technique may present a very reliable high resolution pattern transfer technique suitable for graphene device applications and can be extended to other inorganic materials.

  • PDF

Influence of surface morphology and thickness of molecular thin films on the performance of SubPc-$C_{60}$ photovoltaic devices

  • Kim, Jin-Hyun;Gong, Hye-Jin;Yim, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.336-336
    • /
    • 2011
  • Over the past decades, organic semiconductors have been investigated intensely for their potential in a wide range of optoelectronic device applications since the organic materials have advantages for very light, flexible and low cost device fabrications. In this study, we fabricated small-molecule organic solar cells (OSCs) based on chloro[subphthalocyaninato]boron(III) (SubPc) as an electron donor and $C_{60}$ as an electron acceptor material. Recently SubPc, a cone-shaped molecule with $14{\pi}$-electrons in its aromatic system, has attracted growing attention in small-molecule OSC applications as an electron-donating material for its greater open-circuit voltage (VOC), extinction coefficient and dielectric constant compared to conventional planar metal phthalocyanines. In spite of the power conversion efficiency (PCE) enhancement of small-molecule OSC using SubPc and $C_{60}$, however, the study on the interface between donor-acceptor heterojunction of this system is limited. In this work, SubPc thin films at various thicknesses were deposited by organic molecular beam deposition (OMBD) and the evolution of surface morphology was observed using atomic force microscopy (AFM) and field emission scanning electron microscopy (FE-SEM). We also investigated the influence of film thickness and surface morphology on the PCE of small-molecule OSC devices.

  • PDF

New polymeric host material for efficient organic electro phosphorescent devices

  • Jung, Choong-Hwa;Park, Moo-Jin;Eom, Jae-Hoon;Shim, Hong-Ku;Lee, Seong-Taek;Yang, Nam-Choul;Liand, Duan;Suh, Min-Chul;Chin, Byung-Doo;Hwang, Do-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.843-845
    • /
    • 2009
  • A polymeric host for triplet emitters composed of N-alkylcarbazole and tetramethylbenzene units was successfully synthesized. Efficient energy transfer was observed between this polymeric host and green phosphorescent dyes. The device fabricated using 5 wt% green 1 in the polymeric host as the emitting layer showed the best performance. Thin films of this host-guest system, exhibiting clear stripe patterns could be prepared through the LITI process. The patterned films were then used to fabricate electrophosphorescent devices, which show performance characteristics similar to those of spin-coated devices. The new host material is a good candidate to be used in polymer-based full-color electrophosphorescent light-emitting displays.

  • PDF

Characterization of Non-polar 6H-SiC Substrates for Optoelectronic Device Applications (광전소자 응용을 위한 무극성 6H-SiC 기판의 특성)

  • Yeo, Im-Gyu;Lee, Tae-Woo;Choi, Jung-Woo;Seo, Jung-Doo;Ku, Kap-Ryeol;Lee, Won-Jae;Shin, Byung-Chul;Kim, Young-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.390-396
    • /
    • 2009
  • The present research was focused to investigate the quality of non-polar SiC substrates grown by a conventional PVT method for optoelectronic applications. The half part of the PVT-grown 6H-SiC crystal boules was sliced along a-direction and m-direction to extensively analyze non-polar planes and then remaining part of that was sliced along the basal plane to produce wafers. The non-polar SiC m-plane and a-plane exhibited apparent peaks around 2 theta=$120^{\circ}$((3-300) plane) and 2 theta=$60^{\circ}$ ((11-20) plane), respectively. FWHM values of m-plane measured along a-direction and c-direction were 60 arc see and 57 arcsec respectively, a-plane measured along m-direction and c-direction were 41 arcsec and 51 arcsec respectively. The typical absorption spectra of SiC crystals indicated that each of SiC crystals were the 6H-SiC with fundamental absorption energy of about 3.04 eV. Non-polar planes contained no micropipe on etched surface. The carrier concentration and mobility of non-polar SiC wafers have estimated by Raman spectrum. It was observed that the carrier mobility is low in the area far from seed crystal with compared to other places.