• Title/Summary/Keyword: optimum storage time

Search Result 234, Processing Time 0.029 seconds

Analysis and Estimation of Reservoir Sedimentation Using Remote Sensing and GIS

  • Sungmin Cho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.199-204
    • /
    • 2023
  • Periodic assessment of reservoir capacity is essential for better water resources management and planning for the future water use. Reservoirs and water storage structures raised on the rivers are subjected to sedimentation and he sedimentation is caused by deposition of eroded sediment particles carried by the streams. Knowledge of reservoir sedimentation is important to estimate avaliable storage capacity for optimum reservoir operation and scheduling water release. In recent years, remote sensing and GIS techniques have emerged as an important tool in carrying out reservoir capacity analysis and water management. The reduction in storage capacity as compared to the original capacity at the time of reservoir impounding is indicative of sediment deposition. In this study, the application of GIS and remote sensing techniques were applied to assess the sediment deposition, losses in the reservoir storage and the revised cumulative capacity. Satellite images covering Pyodongdong reservoir were analyzed using Erdas Imagine and ArcGIS softwares.Cumulative capacities at different levels were also calculated and we estimated that the revised live storage was 84.2Mft3 in 2021 and 64.3Mft3 in 2022 while the original capacity was 22.8 and 53.6Mft3 in 2021 and 2022.

Quality Characteristics of Small Package Kimchi according to Packing Material and Storage Temperature (포장재와 저장온도에 따른 소포장 김치의 품질특성)

  • Park, Hye-Young;Ahn, Ji-A;Seo, Hae-Jung;Choi, Hye-Sun
    • Korean journal of food and cookery science
    • /
    • v.27 no.1
    • /
    • pp.63-73
    • /
    • 2011
  • Cabbage (Baechu) Kimchi in its truncated form was placed in four different packing materials, Ny/PE/LLDP, OPP/AL/PE, PP and PET, and quality changes were observed during storage. Changes in pH and total acidity showed an x-shaped cross-curve as pH decreased and total acidity increased during storage. PP tray showed the slowest change at $5^{\circ}C$ with time. The pH was initially 6.25, but decreased to 4.12~4.16 at 20 days, and total acidity showed a 4 to 4.8-fold increase after 20 days of storage compared to the initial value. During storage at $5^{\circ}C$, total bacterial count and lactic acid bacterial count rapidly increased after 4 days. The total bacterial quantity decreased after a period of time and there were differences according to packaging material; OPP/AL/PE packaging showed the most dramatic decrease. Change in microbial count mostly followed a similar pattern to that of total acidity for all packaging materials. Changes in the color of Kimchi liquid, when examined by color index in $L{\cdot}b$/a form, rapidly decreased over time, similar to pH. Small Ny/PE/PP and OPP/AL/PE packages of Kimchi were examined for changes in free volume inside the packaging. After 13 days of storage at $5^{\circ}C$, the volume was 243 mL, but storage at $20^{\circ}C$ resulted in a volume of 372 mL, a more than 1.5-fold increase in free volume. There were changes in the quality characteristics of small package Kimchi according to storage temperature and packaging material, and large changes in pH, total acidity, and microbial count were evident upon storage at $5^{\circ}C$ for 8 days, which was the optimum palatability period. Mostly, PP treatment showed the slowest quality changes upon storage at $5^{\circ}C$. However, due to small package Kimchi's fast consumption system, the appropriate choice of packaging material must consider the product's turnover ratio. Further, the varieties of small package Kimchi should be diversified according to different consumer preferences by offering Kimchi with different maturity levels. Further, since the leading consumer base ranges in age from the teens to thirties, the development of various products targeting such consumers is necessary.

Fabrication and Characteristics of 150ℓ Class Hydrogen Tank Using Hydrogen Storage Alloy (수소저항합금을 이용한 150ℓ급 수소저장용기의 제작과 특성에 관한 연구)

  • Kang, Kll-Ku;Gang, Sei-Sun;Kwon, Ho-Young;Lee, Rhim-Youl
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.2
    • /
    • pp.110-118
    • /
    • 2002
  • The hydrogen storage vessel having a good heat conductivity along with a simple structure and a low cost for these alloys was designed and manufactured, and then its characteristic properties were studied in this study. The various parts in hydrogen storage vessel consisted of copper pipes and stainless steel of 250 mesh reached the setting temperature after 4~5 minutes, which indicated that storage vessel had a good heat conductivity that was required in application. And also the storage vessel had a good property of hydrogen transport considering that the reaction time between hydrogen and rare-earth metal alloys in storage vessel was found to be within 10 min at $18^{\circ}C$ under 10 atmospheric pressure. It showed that the average capacity of discharged hydrogen volume was found to be $120{\ell}$ for $MmNi_{4.5}Mn_{0.5}$ under discharging conditions of $40^{\circ}C{\sim}80^{\circ}C$ at a constant flow rate of $5{\ell}$/min. It was found that the optimum discharging temperature for obtaining an appropriate pressure of 3atm was determined to be $60^{\circ}C$ for $MmNi_{4.5}Mn_{0.5}$ hydrogen storage alloy.

Seed Deterioration Response of Different Genes of Sweet Corn during Long-tenn Storage

  • Lee, Myoung-Hoon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.4
    • /
    • pp.317-320
    • /
    • 2001
  • Sweet com seeds deteriorate faster due to low starch content than field com seeds when stored for a long tenn. This study had been conducted to observe the seed deterioration of four different sweet corns in a long tenn storage conditions in room temperature. Four kinds of sweet com genes (sh2, bt, su, and se) were harvested from 15 days to 50 days after silking with 5-day intervals. These seeds were stored in the room temperature and tested for germination percentages from 3 months to 18 months period with 3-month interval. su seeds germinated better than other types of gene. Hybrid Mecca which is sh2 gene germinated better when stored for 3 months to 18 months. For all genes, mean regression equations in relation to storage periods showed linear responses. For regression equation, the slope of sh2 gene was lower than that of su gene. The highest slope value was observed in bt gene showing faster deterioration rate. The rate at which seed deteriorates seems to be affected by the date at which it was harvested. The seeds that were harvested at the optimum time deteriorated more slowly than those which were not.

  • PDF

Evaluation of Gamma Irradiation for Extending the Shelf Life of Kimchi (김치의 저장성 연장을 위한 Gamma선 조사)

  • Cha, Bo-Sook;Kim, Woo-Jung;Byun, Myung-Woo;Kwon, Joong-Ho;Cho, Han-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.109-119
    • /
    • 1989
  • To improve the storage method of Kimchi, optimum ripening Kimchi for an irradiation treatment(the time of around 0.3% in total acidity of Kimchi) was irradiated by doses of 1, 2, 3 kGy with Co-60 ${\gamma}-radiation$ and stored at $10^{\circ}C$. Total aerobic bacteria increased in the beginning of storage and then decrease slowly as the number of total lactic acid bacteria increased. Total lactic acid bacteria initially loaded by $10^8\;cells/ml$ in Kimchi shortly after irradiation reduced to $10^4-10^6\;cells/ml$ with 1-3 kGy doses and decreased gradually through the whole storage period. The initial load of yeast, $10^3\;cells/ml$, increased steadily during Kimchi storage and led to more than $10^4\;cells/ml$ after 30 days of storage. While it maintained tha the load in 2-3 kGy irradiated groups after 30 days of storage was less than that at the beginning of storage. pH, acidity and volatile acid in the nonirradiated group were 4.0, 0.7% and 0.06%, respectively at the 15th day after storage, but at the 30th day after storage, 2-3 kGy irradiated groups showed different values, 4.1, 0.58-0.63%, and 0.04-0.05%, respectively. The texture(firmness) of Kimchi reduced along with storage time, and 2 kGy irradiated group proved most favourable in its texture during storage. In the sensory evaluation of Kimchi, nonirradiated group was inedible after 15 days of storage, whereas 2-3 kGy irradiated groups could proling the storage-life of Kimchi over 2 times compared with the nonirradiated Kimchi, showing the good sensory quality even after 30 days of storage.

  • PDF

Study on the Lowest Cost Analysis of Steel Plates for Stiffener Installed on the Side Wall of LNG Tank (LNG내부탱크 Stiffener 판재 비용의 최소화 분석 연구)

  • Yun, Sang-Kook
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.81-86
    • /
    • 2014
  • The analysis of the cost optimization and the total demand weight of 9% Ni-steel plates for installing shell stiffeners in the side wall of the large capacity LNG storage tank are carried out in order to reduce the costs of the plates for stiffeners. This study can be possible for developing the calculation program which evaluates the bill-of-material for stiffeners to reduce the manual calculation time of tank designer, and to enable the estimation of weight and cost for various plate width. The results show that the demand weight and cost are reduced as the plate width is wider. Nevertheless, both the weight and the cost with plate width for stiffeners should be compared and evaluated to obtain the optimum cost time to time because of various cost incremental factors of plates such as transportation and handling cost, etc.

Study on Carbon Dioxide Storage through Mineral Carbonation using Sea Water and Paper Sludge Ash (해수와 제지슬러지소각재의 광물탄산화 반응을 이용한 이산화탄소 저장 연구)

  • Kim, Dami;Kim, Myoung-jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.18-24
    • /
    • 2016
  • Mineral carbonation is a technology for permanently storing carbon dioxide by reacting with metal oxides containing calcium and magnesium. In this study, we used sea water and alkaline industrial by-product such as paper sludge ash (PSA) for the storage of carbon dioxide through direct carbonation. We found the optimum conditions of both sea water content (mixing ratio of sea water and PSA) and reaction time required in the direct carbonation through various experiments using sea water and PSA. In addition, we compared the amounts of carbon dioxide storage with the cases when sea water and ultra-pure water were separately used as solvents in the direct carbonation with PSA. The amount of carbon dioxide storage was calculated by using both solid weight increase through the carbonation reaction and the contents of carbonate salts from thermal gravimetric analysis. PSA particle used in this study contained 67.2% of calcium. The optimum sea water content and reaction time in the carbonation reaction using sea water and PSA were 5 mL/g and 2 hours, respectively, under the conditions of 0.05 L/min flow rate of carbon dioxide injected at $25^{\circ}C$ and 1 atm. The amounts of carbon dioxide stored when sea water and ultra-pure water were separately used as solvents in the direct carbonation with PSA were 113 and $101kg\;CO_2/(ton\;PSA)$, respectively. The solid obtained through the carbonation reaction using sea water and PSA was composed of mainly calcium carbonate in the form of calcite and a small amount of magnesium carbonate. The solid obtained by using ultra-pure water, also, was found to be carbonate salt in the form of calcite.

Export Container Remarshaling Planning in Automated Container Terminals Considering Time Value (시간가치를 고려한 자동화 컨테이너 터미널의 수출 컨테이너 이적계획)

  • Bae, Jong-Wook;Park, Young-Man;Kim, Kap-Hwan
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.2
    • /
    • pp.75-86
    • /
    • 2008
  • A remarshalling is one of the operational strategies considered importantly at a port container terminal for the fast ship operations and heighten efficiency of slacking yard. The remarshalling rearranges the containers scattered at a yard block in order to reduce the transfer time and the rehandling time of container handling equipments. This Paper deals with the rearrangement problem, which decides to where containers are transported considering time value of each operations. We propose the mixed integer programming model minimizing the weighted total operation cost. This model is a NP-hard problem. Therefore we develope the heuristic algorithm for rearrangement problem to real world adaption. We compare the heuristic algorithm with the optimum model in terms of the computation times and total cost. For the sensitivity analysis of configuration of storage and cost weight, a variety of scenarios are experimented.

The Optimal Design of Air Bearing Sliders of Optical Disk Drives by Using Simulated Annealing Technique (SA 기법을 이용한 광디스크 드라이브 공기베어링 슬라이더의 최적설계)

  • Chang, Hyuk;Kim, Hyun-Ki;Kim, Kwang-Sun;Rim, Kyung-Hwa
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.316-321
    • /
    • 2001
  • The optical storage device has recently experienced significant improvement, especially for the aspects of high capacity and fast transfer rate. However, it is necessary to study a new shape of air bearing surface for the rotary type actuator because the optical storage device has the lower access time than that of HDD (Hard Disk Drives). In this study, we proposed the air bearing shape by using SA (Simulated Annealing) algorithm which is very effective to achieve the global optimum instead of many local optimums. The objective of optimization is to minimize the deviation in flying height from a target value 100nm. In addition, the pitch and roll angle should be maintained within the operation limits.

  • PDF

Study on the Change of Physical Properties with Silica Contents in Solution Styrene-Butadiene Rubber (SSBR)/Silica Composites

  • Kim, Tae Yeop;Won, Sung Yeon;Kang, Shin Hye;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.17-21
    • /
    • 2017
  • The optimum mixing conditions of silica and silane containing rubber composites were evaluated by investigating the properties of rubber composites prepared with a silica composition of 10, 20, 40, 60, and 80 g, respectively. The crosslinking rate decreased with increasing silica content, with he promoters being adsorbed on the silica surface with in the rubber composite. As a result, the increase in crosslinking time resulted in the destruction of the silica structure. The increase of the bound rubber content due to the destruction of the silica structure inhibited the chain motion of the polymer molecules and reduced the cohesion of the silica itself. Finally, the increase of silica content showed the increase of hardness, tensile strength, and storage modulus of rubber composites.