• Title/Summary/Keyword: optimum site

Search Result 484, Processing Time 0.038 seconds

A Study on the Development of a Ultra-Strength Precast Concrete Bearing Concrete Bearing Plate (초고강도 ($\acute{f}_{C91}$= 950kg/$\textrm{cm}^2$) P.C Bearing Plate 개발에 관한 연구)

  • 소현창;정병욱;김재우;문성규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.643-648
    • /
    • 1997
  • P.C Bearing Plate method, corresponding to the existing steel plate build-up method, is developed by the very first in domestic and is applied to the foundation in the HYUNDAI building at Kang-Nam. P. C Bearing Plate produced in ourself P.C plant can stand against vertical load of 7,000ton obtaining allowable force of soil. It is possible to minmize cost expediting, do site assembling and omit unnecessary excavation work by plant prefabrication of foundation member. The purpose of this paper is to study the optimum mixing design of Ultra-high strength concrete ($\acute{f}_{C91}$= 950kg/$\textrm{cm}^2$), crack control through measuring the heat of hydration, mock up test for the optimum curing method. As mentioned above, developing the Ultra-high strength Precast Concrete Bearing Plate set up successfully in the site foundation work of the HYUNDAI Building at Kang-Nam.

  • PDF

Improvement of the Optimum pH of Aspergillus niger Xylanase towards an Alkaline pH by Site-Directed Mutagenesis

  • Li, Fei;Xie, Jingcong;Zhang, Xuesong;Zhao, Linguo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.11-17
    • /
    • 2015
  • In an attempt to shift the optimal pH of the xylanase B (XynB) from Aspergillus niger towards alkalinity, target mutation sites were selected by alignment between Aspergillus niger xylanase B and other xylanases that have alkalophilic pH optima that highlight charged residues in the eight-residues-longer loop in the alkalophilic xylanase. Multiple engineered XynB mutants were created by site-directed mutagenesis with substitutions Q164K and Q164K+D117N. The variant XynB-117 had the highest optimum pH (at 5.5), which corresponded to a basic 0.5 pH unit shift when compared with the wild-type enzyme. However, the optimal pH of the XynB-164 mutation was not changed, similar to the wild type. These results suggest that the residues at positions 164 and 117 in the eight-residues-longer loop and the cleft's edge are important in determining the pH optima of XynB from Aspergillus niger.

Determination of the Ground Station Locations for both Dual-Site Ranging and Site-Diversity at Q/V-band Satellite Communication for an Intersatellite System Scenario

  • Yilmaz, Umit C.;Cavdar, Ismail H.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.445-450
    • /
    • 2015
  • Generally, Low Earth Orbit (LEO) satellites are used to collect image or video from earth's surface. The collected data are stored on-board and/or transmitted to the main ground station directly or via polar ground station using terrestrial line. Today, an intersatellite link between a LEO and a GEO satellite allows transmission of the collected data to the main ground station through the GEO satellite. In this study, an approach for a continuous communication starting from LEO through GEO to ground station is proposed by determining the optimum ground station locations. In doing so, diverse ground stations help to determine the GEO orbit as well. Cross-correlation of the long term daily rainfall averages are multiplied with the logarithmic correlation of the sites to calculate the joint correlation of the diverse ground station locations. The minimum values of this joint correlation yield the optimum locations of the ground stations for Q/V-band communication and satellite control operations. Results for several case studies are listed.

Optimum Design of Prestressed Concrete Girder Railway Bridge II : Optimum Section with 30m Span Length Accounting for Dynamic Stability (프리스트레스트 콘크리트 거더 철도교의 최적설계 II: 동적안정성을 고려한 30m 지간의 최적단면)

  • Lee Jong-Min;Kim Su-Hyun;Jung Jae-Dong;Lee Jong-Sun;Cho Sun-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.102-109
    • /
    • 2006
  • The PSC girders which currently used at highway bridge have the standard cross sections about 25m, 30m and 35m span. Thus, in case of highway bridge design, the bridge designer can choose the adequate standard cross section according to constructional condition. However, in railway bridge design, there are limitations on reasonable bridge design considering circumstances of a construction site and conditions of location etc, because the PSC girders used at railway bridge have the cross section about only 25m span length. In this study, the optimum design for the PSC girder railway bridge with 30m span length has been performed. Also, in order to investigate the dynamic stability of railway bridge using the optimum section of PSC girder, dynamic analysis has been carried out. From the results of analysis, it is suggested to denote the optimum section which satisfied the structural safety, dynamic stability and economical efficiency all together.

Study of Permeability of Bentonite Mixtured Soil (벤토나이트 혼합토의 투수성에 관한 연구)

  • Kim, Sung-Hwan;Oh, Young-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.805-812
    • /
    • 2009
  • Permeation water resulting in the reclaimed land of waste can possibly cause the second pollution, such as the underground water and environmental pollution. Accordingly, Liner layer has been installed in the reclaimed land of waste to block and purify permeation water and prevent this second pollution. The material used as Liner layer is the one for water resistance and that of less than permeability coefficient $1{\times}10^{-7}cm/sec$ is widely used. As it is very difficult to secure in bulk this natural clay with low permeability around the field, the suitable way to secure low permeable material is that we use blend with good watertighness by mixing it with natural soil which is spread in the site. While this mixed soil which can resist water is commonly used in the site, bentonite mixed soil which is widely used as Liner layer in the reclaimed land of waste is recognized in Liner and durability. In this study, the engineering characteristics of soil-bentonite mixed liner are investigated using the laboratory hydraulic conductivity and uni-axial strength tests. The soil used for the liner is the clay soil located near the site. Mixing ratio of the bentonite which satisfies the requirement of hydraulic conductivity is determined and the optimum mixing ratio of bentonite is recommended for the landfill. After the mixed liner is constructed using the optimum mixing ratio of bentonite, the block samples of the constructed liner are obtained and the strength tests were performed. The hydraulic and strength properties of the liner for construction of the waste landfill were both satisfactory.

  • PDF

Effect of Materials and Construction Conditions on Shotcrete Quality (숏콘크리트 품질에 미치는 재료 및 시공 조건의 영향)

  • 현석훈;한기석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.227-232
    • /
    • 1994
  • Recently, TBM (Tunnel Boring Machince) method for a tunnel construction in domestic is very promisible due to shorten a constrution period. It is very important to increase the efficiency of the shotcrete for the TBM. The major factors influencing the efficienty of shotcrete are materials, mix disign, constrution conditions and skill of nozzle-man. In this paper, first, optimum synthesize conditions for the shotcrete accelerators was explored and early stiffenting mechanisms also studied. Second, TBM method was applied for a real job site using the optimum conditions obtained from a lab scale experiment.

  • PDF

Treatability Tests for the Bioremediation of Unsanitary Landfill Waste Soils

  • Park, Sung-Chan;Lee, Young-Hee;Oh, Young-Sook
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.169-173
    • /
    • 2003
  • A treatability investigation was conducted to determine if landfarming would be effective for the remediation of unsanitary landfill waste soils. Calculations based on biodegradable organic carbon contents and initial CO$_2$ evolution rates revealed that landfarming has a high potential for landfill site remediation and that the optimum strategy for bioremediation is site-specific.