Browse > Article
http://dx.doi.org/10.4014/jmb.1402.02055

Improvement of the Optimum pH of Aspergillus niger Xylanase towards an Alkaline pH by Site-Directed Mutagenesis  

Li, Fei (College of Chemical Engineering, Nanjing Forestry University)
Xie, Jingcong (College of Chemical Engineering, Nanjing Forestry University)
Zhang, Xuesong (College of Chemical Engineering, Nanjing Forestry University)
Zhao, Linguo (College of Chemical Engineering, Nanjing Forestry University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.1, 2015 , pp. 11-17 More about this Journal
Abstract
In an attempt to shift the optimal pH of the xylanase B (XynB) from Aspergillus niger towards alkalinity, target mutation sites were selected by alignment between Aspergillus niger xylanase B and other xylanases that have alkalophilic pH optima that highlight charged residues in the eight-residues-longer loop in the alkalophilic xylanase. Multiple engineered XynB mutants were created by site-directed mutagenesis with substitutions Q164K and Q164K+D117N. The variant XynB-117 had the highest optimum pH (at 5.5), which corresponded to a basic 0.5 pH unit shift when compared with the wild-type enzyme. However, the optimal pH of the XynB-164 mutation was not changed, similar to the wild type. These results suggest that the residues at positions 164 and 117 in the eight-residues-longer loop and the cleft's edge are important in determining the pH optima of XynB from Aspergillus niger.
Keywords
Aspergillus niger; alkaline; site-directed mutagenesis; xylanase B;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bardford, M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248.   DOI   ScienceOn
2 Ahmed S, Riaz S, Jamil A. 2009. Molecular cloning of fungal xylanases: an overview. Appl. Microbiol. Biotechnol. 84: 19-35.   DOI
3 Asghari SM, Khajeh K, Moradian F, Ranjbar B, NaderiManesh H. 2004. Acid-induced conformational changes in Bacillus amyloliquefaciens alpha-amylase: appearance of a molten globule like state. Enzyme Microb. Technol. 35: 51-57.   DOI   ScienceOn
4 Baba T, Shinke R, Nanmori T. 1994. Identification and characterization of clustered genes for thermostable xylan-degrading enzymes, β-xylosidase and xylanase of Bacillus stearothermophilus 21. Appl. Environ. Microbiol. 60: 2252-2258.
5 Bergquist P, Teo’O V, Gibbs M, Cziferszky A, De Faria FP, Azevedo M, Nevalainen H. 2002. Expression of xylanase enzymes from thermophilic microorganisms in fungal host. Extremophiles 6: 177-184.   DOI
6 Collins T, Gerday C, Feller G. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23.   DOI   ScienceOn
7 Bim MA, Franco TT. 2001. Extraction in aqueous two-phase system of alkaline xylanase produced by Bacillus pumilus and its application in kraft pulp bleaching. J. Chromatogr. B 743: 349-356.   DOI   ScienceOn
8 Chen YL, Tang TY, Cheng KJ. 2001. Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Can. J. Microbiol. 47: 1088-1094.   DOI
9 Chipeta ZA, Du Preez JC, Christopher L. 2008. Effect of cultivation pH and agitation rate on growth and xylanase production by Aspergillus oryzae in spent sulphite liquor. J. Ind. Microbiol. Biotechnol. 35: 587-594.   DOI
10 De LemosEsteves F, Gouders T, Brasseur JL, Rigali S, Frere JM. 2005. Improving the alkalophilic performances of the Xyl1 xylanase from Streptomyces sp. S38: structural comparison and mutational analysis. Protein Sci. 14: 292-302.   DOI   ScienceOn
11 Fenel F, Zitting AJ, Kantelinen A. 2006. Increased alkali stability in Trichoderma reesei endo-1,4-β-xylanase by site directed mutagenesis. J. Biotechnol. 121: 102-107.   DOI   ScienceOn
12 Huang JL, Wang GX, Xiao L. 2006. Cloning, sequencing and expression of the xylanase gene from a Bacillus subtilis strain B10 in Escherichia coli. Bioresour. Technol. 97: 802-808.   DOI   ScienceOn
13 Kulkarni N, Shendye A, Rao M. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456.   DOI
14 Kanokratana P, Chantasingh D, Champreda V, Tanapongpipat S, Pootanakit K, Eurwilaichitr L. 2008. Identification and expression of cellobiohydrolase (CBH) gene from an endophytic fungus, Fusicoccum sp. (BCC4124) in Pichia pastoris. Protein Expr. Purif. 58: 148-153.   DOI   ScienceOn
15 Li F, Zhao LG, Li GQ, Yang SY, Li X, Wang F. 2010. Cloning, expression and characterization of xylanase gene XYNB from Aspergillus niger in Pichia pastoris. ISETPP 637-640.
16 Kim SH, Pokhrel S, Yoo YJ. 2008. Mutation of nonconserved amino acids surrounding catalytic site to shift pH optimum of Bacillus circulans xylanase. J. Mol. Catal. B Enzym. 55: 130-136.   DOI   ScienceOn
17 Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
18 Li F, Yang SY, Zhao LG, Li Q, Pei JJ. 2012. Synonymous condon usage bias and overexpression of a synthetic xynB gene from Aspergillus niger NL-1 in Pichia pastoris. BioRes. Open Access 7: 2330-2343.
19 Luttig M, Pretorius IS, Van Zyl WH. 1997. Cloning of two b-xylanase-encoding genes from Aspergillus niger and their expression in Saccharomyces cerevisiae. Biotechnol. Biotechnol. Lett. 19: 411-415.   DOI
20 Mchunu NP, Singh S, Permaul K. 2009. Expression of an alkalo-tolerant fungal xylanase enhanced by directed evolution in Pichia pastoris and Escherichia coli. J. Biotechnol. 141: 26-30.   DOI   ScienceOn
21 Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
22 Umemoto H, Ihsanawati Ianmi M, Yatsunami R, Funui T, Kumasaka T, Tanaka N, Nakamura S. 2009. Improvement of alkaliphily of Bacillus alkaline xylanase by introducing amino acid substitutions both on catalytic cleft and protein surface. Biosci. Biotechnol. Biochem. 73: 965-967.   DOI   ScienceOn
23 Oh DK, Oh HJ, Kim HJ, Cheon J, Kim P. 2006. Modification of optimal pH in L-arabinose isomerase from Geobacillus stearothermophilus for D-galactose isomerization. J. Mol. Catal. B Enzym. 43: 108-112.   DOI   ScienceOn
24 Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS. 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591.   DOI
25 Sriprang R, Asano K, Gobsuk J, Tanapongpipat S, Champreda V, Eurwilaichitr L. 2006. Improvement of thermostability of fungal xylanase by using site-directed mutagenesis. J. Biotechnol. 126: 454-462.   DOI   ScienceOn
26 Valls C, Roncero MB. 2009. Using both xylanase and laccase enzymes for pulp bleaching. Bioresour. Technol. 100: 2032-2039.   DOI   ScienceOn
27 Wang Q, Xia T. 2008. Enhancement of the activity and alkaline pH stability of Thermobifida fusca xylanase A by directed evolution. Biotechnol. Lett. 30: 937-944.   DOI
28 Wohlfahrt G, Pellikka T, Boer H, Teeri TT, Koivula AT. 2003. Probing pH-dependent functional elements in proteins: modification of carboxylic acid pairs in Trichoderma reesei cellobiohydrolase Cel6A. Biochemistry 42: 10095-10103.   DOI   ScienceOn
29 Xia T, Wang Q. 2009. Directed evolution of Streptomyces lividans xylanase B toward enhanced thermal and alkaline pH stability. World J. Microbiol. Biotechnol. 25: 93-100.   DOI
30 Yang JH, Park JY, Kim SH, Yoo YJ. 2008. Shifting pH optimum of Bacillus circulans xylanase based on molecular modeling. J. Biotechnol. 133: 294-300.   DOI   ScienceOn