• 제목/요약/키워드: optimum shape and length

검색결과 147건 처리시간 0.026초

Simplified method to design laterally loaded piles with optimum shape and length

  • Fenu, Luigi;Briseghella, Bruno;Marano, Giuseppe Carlo
    • Structural Engineering and Mechanics
    • /
    • 제71권2호
    • /
    • pp.119-129
    • /
    • 2019
  • Optimum shape and length of laterally loaded piles can be obtained with different optimization techniques. In particular, the Fully Stress Design method (FSD) is an optimality condition that allows to obtain the optimum shape of the pile, while the optimum length can be obtained through a transversality condition at the pile lower end. Using this technique, the structure is analysed by finite elements and shaped through the FSD method by contemporarily checking that the transversality condition is satisfied. In this paper it is noted that laterally loaded piles with optimum shape and length have some peculiar characteristics, depending on the type of cross-section, that allow to design them with simple calculations without using finite element analysis. Some examples illustrating the proposed simplified design method of laterally loaded piles with optimum shape and length are introduced.

순 Ti 박판 GTA 용접부의 기계적 성질 및 성형성에 미치는 공정변수의 영향 (The Effect of Process Variables on Mechanical Properties and Formability in GTA Welds of Commercial Pure Titanium Sheet)

  • 김지훈;홍재근;염종택;박노광;강정윤
    • Journal of Welding and Joining
    • /
    • 제28권4호
    • /
    • pp.73-80
    • /
    • 2010
  • In this work, the effect of welding variables on weldability of gas tungsten arc(GTA) welding was investigated with experimental analysis for a commercial pure(CP) titanium (Grade.1). The GTA welding tests on sheet samples with 0.5mm in thick were carried out at different process variables such as arc length, welding speed and electrode shape. In order to search an optimum arc length with full penetration, bead- on-plate welding before butt-welding were performed with different arc length conditions. From the bead- on-plate welding results, the optimum condition considering arc stability and electrode loss was obtained in the arc length of 0.8mm. Butt-welding tests based on the arc length of 0.8mm were carried out to achieve the optimum conditions of welding speed and electrode shape. Optimum conditions of welding speed and electrode shape were suggested as 10 mm/s and truncated electrode shape, respectively. It was successfully validated by the microstructural observation, tensile tests, micro-hardness tests and formability tests.

고정된 핀 바닥 높이에 기준한 비대칭 사다리꼴 핀의 최적화 (Optimization of an Asymmetric Trapezoidal Fin Based on the Fixed Fin Base Height)

  • 송년주;강형석
    • 한국추진공학회지
    • /
    • 제16권1호
    • /
    • pp.45-54
    • /
    • 2012
  • 위 측면 표면 기울기가 변화하는 비대칭 사다리꼴 핀의 최적화가 2차원 해석적 방법을 사용하여 수행된다. 고정된 핀 바닥 높이에 대하여 최적 열손실, 핀 길이 그리고 유용도가 내부유체 대류특성계수, 핀 바닥 두께, 핀 바닥 높이, 핀 형상계수 그리고 주위 대류특성계수의 함수로 나타내어진다. 이러한 최적화 절차를 위해서 핀으로부터의 최대 열손실 값의 95%를 최적 열손실 값으로 정의하였다. 결과 중 하나는 최적 열 손실과 유용도는 핀 형상계수의 변화에 독립적으로 보이는 반면 최적 핀 길이는 핀 형상계수가 증가함에 따라 거의 선형적으로 감소함을 보여주고 있다.

케이블-트러스 복합구조물의 형상최적화에 관한 연구 (A Study on the Shape Optimization of the Cable-Truss Hybrid Structures)

  • 한상을;조남철
    • 한국공간구조학회논문집
    • /
    • 제3권3호
    • /
    • pp.75-83
    • /
    • 2003
  • The purpose of this study is to obtain the optimum shape of cable domes by using the real coding genetic algorithm. Generally, the structural performance of the cable domes is influenced very sensitively by pre-stress, geometry and length of the mast because of flexible system. So, it is very important to decide the optimum shape to get maximum stiffness of cable domes. We use the analytical model to verify the usefulness of this algorithm for shape optimization and analyze the roof system of Seoul olympic gymnastic arena as analytical model of a practical structures. It is confirmed lastly that the optimum shape domes have more stiffness than initial shape ones.

  • PDF

사다리꼴 핀의 최적 성능과 설계 (Optimum Performance and Design of a Trapezoidal Fin)

  • 강형석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제27회 추계학술대회논문집
    • /
    • pp.82-85
    • /
    • 2006
  • 측면 기울기가 변하는 사다리꼴 핀이 일차원 해석적 방법에 의하여 최적으로 설계된다. 각기 다른 네 경우의 대류특성계수에 대하여 핀 끝 길이를 따른 열손실의 변화경향이 보여 진다. 최적의 열손실은 다소 임의적으로 최대열손실의 92%로 선택된다. 이러한 최적의 열손실이 발생할 때의 최적의 핀 길이 대 대류특성계수의 변화가 나타내진다. 최적의 유용성과 특정한 경우의 유용성이 핀 형상 계수의 함수로 보여 진다.

  • PDF

케이블 돔 시스템의 형상 최적화 (Shape Optimization of the Cable Dome System)

  • 조남철;최승열;한상을
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.151-160
    • /
    • 2004
  • Genetic algorithm is the theory of grafting the principle of survival of the fittest in genetics on to the computer algorithm and it is used to solve the optimization problems, especially the shape and size optimization of the structure in Architectural problems. In the size optimization problem discrete variables are used, but series variables have to be used in the shape optimization problem because of the incongruenty. The purpose of this study is to obtain the optimum shape of cable domes by using the real coding genetic algorithm. Generally, the structural performance of the cable domes is influenced very sensitively by pre-stress, geometry and length of the mast because of its flexible characteristic. So, it is very important to decide the optimum shape to get maximum stiffness of cable domes. We use the model to verify the usefulness of this algorithm for shape optimization and analyze the roof system of Seoul Olympic Gymnastic Arena as analytical model of a practical structures. It is confirmed lastly that the optimum shape domes have more stiffness than initial shape ones.

  • PDF

Hull form design for resistance minimization of small-scale LNG bunkering vessels using numerical simulation

  • Pak, Kyung-Ryeong;Song, Gi-Su;Kim, Hee-Jung;Son, Hye-Jong;Park, Hyoung-Gil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.856-867
    • /
    • 2020
  • This paper aims to provide the most useful method of determining an optimum LCB position and design direction of fore- and aft-body hull shape for a SLBV. It is known that the SLBV has a lower length-to-beam ratio, larger Cb and simpler stern shape designed for the installation of azimuth thrusters comparing to those of conventional LNG carriers. Due to these specific particulars of SLBV, the optimum LCB position was very different to that of conventional LNG carrier. And various approaches were applied to determine the optimum fore- and aft-body hull shape. The design direction for the optimum hull-form was evaluated as the minimization of the total resistance which includes the wave-making resistance and form-drag with numerical simulation.

Optimum Shape for Buckling and Post-Buckling Behavior of a Laminated Composite Panel with I-type Stiffeners

  • Lee, Gwang-Rog;Yang, Won-Ho;Sub, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1211-1221
    • /
    • 2002
  • A shape optimization of stiffener was conducted to increase buckling load or failure load with stiffened laminated composite panel of I-type under compression loading. Design variables are cap length, web length, and/or thickness under the constraint of volume constancy. The objective function is buckling load and failure load of post-buckling based on Tsai-Hill theory using ABAQUS 5.8 for analysis and Optimizer on Broydon-Fletcher Goldfarb-Sharno Method and Augmented Lagrange Multiplier Method. The effects of relative length of a web and a cap of stiffener on buckling load and failure load of post-buckling were investigated with the results of optimum design.

Optimum shape and length of laterally loaded piles

  • Fenu, Luigi;Briseghella, Bruno;Marano, Giuseppe Carlo
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.121-130
    • /
    • 2018
  • This study deals with optimum geometry design of laterally loaded piles in a Winkler's medium through the Fully Stressed Design (FSD) method. A numerical algorithm distributing the mass by means of the FSD method and updating the moment by finite elements is implemented. The FSD method is implemented here using a simple procedure to optimise the beam length using an approach based on the calculus of variations. For this aim two conditions are imposed, one transversality condition at the bottom end, and a one sided constraint for moment and mass distribution in the lower part of the beam. With this approach we derive a simple condition to optimise the beam length. Some examples referred to different fields are reported. In particular, the case of laterally loaded piles in Geotechnics is faced.

아치구조의 형상 최적화 (Shape Optimization of Arches)

  • 한상훈;변근주
    • 대한토목학회논문집
    • /
    • 제4권4호
    • /
    • pp.127-135
    • /
    • 1984
  • 본 연구는 실제 하중을 받는 강재 아치구조의 최적형상을 다루었다. 목적함수로는 아치의 중량을 취했으며, 제약조건으로는 단면력, 체적, 아치리브의 길이, 아치부채 단연적의 조합으로 구성된 웅력제약초건을 고려하였다. 형상최적화문제는 아치부재의 단면척이 설계변수의 항으로 형성되었으며, 첫단계로 구조해석의 정밀도가 최적 설계의 목적함수값에 미치는 영향을 분석하였다. 형상최적화 알고리즘은 Two-space System 으로 형성되었고, Space 1 에서는 Modified Newton-Raphson Method에 의한 단면최적화, Space 2 에서는 Powell Method 에 의한 형상최적화를 시도하여 형상최적화 알고리즘을 도출하였다. 본 연구에서 도출된 최적화 알고리즘을 이용하여 아치의 단면최적화와 최적 아치형상에 관한 연구가 수행되었다. 이 알고리즘에 의해 실제 조건하에서 아치의 최적 Span-Rise 비를 구할 수 있다.

  • PDF