• Title/Summary/Keyword: optimum mixture

Search Result 869, Processing Time 0.027 seconds

Effects of Different Soil Moisture on the Growth of Plantago asiatica L. (수분공급조절이 질경이 ( Plantago asiatica L. ) 의 생장에 미치는 영향)

  • Lee, Ho Joon;Soon Ja Kim;Hae Won Kang
    • The Korean Journal of Ecology
    • /
    • v.6 no.3
    • /
    • pp.227-235
    • /
    • 1983
  • This research was made over drought resistance and optimum soil moisture needed with Plantago asiatica L. as the material by means of making out the process of its growth under different soil moisture contents. The soil used for the experiment was a mixture of vermiculite and c-layer soil, and the process of growth was compared with each other controlling its soil mositure as: 7%, 15%, 30%, 45%, and 60%. In 7% range of soil moisture which was of low content, the increase of growth was neither significantly indicated nor any permanent seeding done. In view of this phenomenon, Plantago asiatica L. appeared to be highly drought-resistant. It was found rising at 30% range and reaching the optimum state at 45% range and falling down at 60% range range. In viw of this fluctuation indicated above, the optimum soil moisture content needed for the growth of Plantago asiatica L. is thought to be between 30% and 60%. It is thought the number of seed per capsule is not affected by the soil moisture content. It is expected an ecotypic variation by the soil moisture content will bring forth upon Plantago asiatica L.

  • PDF

Effect of Fabrication Method of Cathode on OCV in Enzyme Fuel Cells (효소연료전지의 Cathode 제조조건이 OCV에 미치는 영향)

  • Lee, Se-Hoon;Kim, Young-Sook;Chu, Cheun-Ho;Na, Il-Chai;Lee, Jung-Hoon;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.171-174
    • /
    • 2016
  • Enzyme fuel cells were composed of enzyme cathode and PEMFC anode. Enzyme cathode was fabricated by compression of a mixture of graphite particle, laccase as a enzyme and ABTS as a redox mediator, and then coated with Nafion ionomer. Open circuit voltage (OCV) were measured with variation of cathode manufacture factors, to find optimum condition of enzyme cathode. Optimum pressure was 4.0 bar for enzyme cathode pressing process. Highest OCV was obtained at 95% graphite composition in enzyme cathodee. Optimum glucose concentration was 0.4 mol/l in cathode substrate solution.

Strength and abrasion resistance of roller compacted concrete incorporating GGBS and two types of coarse aggregates

  • Saluja, Sorabh;Goyal, Shweta;Bhattacharjee, Bishwajit
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • Roller Compacted Concrete (RCC) is a zero slump concrete consisting of a mixture of cementitious materials, sand, dense graded aggregates and water. In this study, an attempt has been made to investigate the effect of aggregate type on strength and abrasion resistance of RCC made by using granulated blast furnace slag (GGBS) as partial replacement of cement. Mix proportions of RCC were finalized based upon the optimum water content achieved in compaction test. Two different series of RCC mixes were prepared with two different aggregates: crushed gravel and limestone aggregates. In both series, cement was partially replaced with GGBS at a replacement level of 20%, 40% and 60%. Strength Properties and abrasion resistance of the resultant mixes was investigated. Abrasion resistance becomes an essential parameter for understanding the acceptability of RCC for rigid pavements. Experimental results show that limestone aggregates, with optimum percentage of GGBS, perform better in compressive strength and abrasion resistance as compared to the use of crushed gravel aggregates. Observed results are further supported by stoichiometric analysis of the mixes by using basic stoichiometric equations for hydration of major cement compounds.

Optimization of Ingredient Mixing Ratio for Preparation of Sulgidduk with Saltwort (Salicornia herbacea L.) (함초 첨가 설기떡의 재료 혼합비율의 최적화)

  • Jang, Myung-Sook;Park, Jung-Eun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.5
    • /
    • pp.641-648
    • /
    • 2006
  • In an attempt to get basic data for the utilization of saltwort powder (Salicornia herbaceae L.) as a ingredient in the Sulgidduk. D-optimal design of mixture design showed 14 experimental points including 4 replicates for three independent variables. The three independent variables selected for the experiment were water ($13{\sim}18%$), saltwort powder ($2{\sim}6%$), and sugar ($8{\sim}13%$). The optimum responses variables such as color value. texture, and sensory characteristics were evaluated. The compositional and functional properties of test were measured, and these values were applied to the mathematical models. According to the result of measuring probability of the color value, texture and sensory characteristics were respectively and significance was acknowledged (p<0.05). According to the result of F-test, color values (L, a, b), textural properties (gumminess, chewiness) and sensory characteristics (taste, softness) decided linear model, textural property (hardness) and sensory characteristics (color, smell, moistness, overall acceptance) decided quadratic model. A canonical form and trace plot showed that the influence of each ingredient on the mixture final product. An optimum formulation by numerical and graphical methods were similar. Water, saltwort powder, and sugar were 15.2%, 3.0%, and 9.8% respectively by numerical method, and 15.2%, 3.1%, and 9.7% respectively by graphical method.

Development of Functional Bread with Sea Tangle Single Cell Detritus (SCD) (다시마 Single Cell Detritus(SCD)를 첨가한 기능성 빵의 개발)

  • Bang, Sang-Jin;Choi, Seung-Hwa;Shin, Il-Shik;Kim, Sang-Moo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.10
    • /
    • pp.1430-1437
    • /
    • 2009
  • Functional bread was manufactured with single cell detritus (SCD) of sea tangle. The optimum ingredient formula for SCD bread was determined based on mixture model. Flour and water reduced max weight, strength, hardness and specific loaf volume, whereas the increased SCD reversed the volume change of dough. Flour increased $L^*$ and $b^*$ values of SCD bread, while SCD decreased. Flour and water decreased $a^*$ value, while SCD increased. Max weight, strength, hardness, specific loaf volume, $b^*$ value and water holding capacity (WHC) were linear model on ANOVA table, whereas distance, volume change of dough, $L^*$ and $a^*$ values were nonlinear model. The response constraint coefficient showed that SCD influenced texture of SCD bread more than flour and water did, whereas water influenced the volume change of dough, specific loaf volume and WHC more than flour and SCD did. Moreover, flour influenced color value more than did water and SCD. Distance and $a^*$ value fitted nonlinear model with interaction terms for flour-SCD and water-SCD. Optimum ingredient formula for SCD bread was: flour, 48.25%; water, 30.89%; SCD, 3.86%. Sensory evaluation of SCD bread was a little lower than industrial bread and electrolyzed SCD bread.

Effects of Fly Ash and Gypsum Mixture on Reducing Phosphorus Loss from Paddy Soil (논 토양에서 석탄회와 석고의 혼합제를 활용한 인산유출 저감)

  • Lee, Yong-Bok;Lee, Seul-Bi;Oh, Ju-Hwan;Lee, Chang-Hoon;Hong, Chang-Oh;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.66-71
    • /
    • 2008
  • Phosphorus transfer from agricultural soils to surface waters is an important environmental issue. Fly ash and phospho-gypsum which are industrial by-product were investigated as a means of reducing dissolved phosphorus in arable soil. To determine the optimum mixing ratio of fly ash(FA) and phospho-gypsum(PG) for reducing dissolved reactive P(DRP) in soil, various mixture ratio of FA and PG were mixed with two soil. The DRP content and pH in soils were analysed after 3 weeks incubation under flooding condition. Although DRP content in soils was significantly decreased by FA-PG mixture compared with control, there were no significant difference among the FA and PG mixture ratio of 75:25, 50:50, and 25:75. The mixture of 75% FA and 25% PG was selected for field test. A field experiment was carried out to evaluate the reducing DRP content in paddy soil to which 0(NPK), 20(FG 20), 40(FG 40), and 60(FG 60) Mg $ha^{-1}$ of the mixture were applied. The DRP content was reduced by 31% at the application rate of 60 Mg $ha^{-1}$. In contrast to deceasing DRP, Ca-P content increased significantly with the mixture application rate. After rice harvesting, available $SiO_2$, P, and exchangeable Ca content in soil increased significantly with application rate due to high content of Si, P, and Ca in the mixture. Mixtures of fly ash and gypsum should reduce P loss from paddy soil and increase soil fertility.

Performance Evaluation of 100 % RAP Asphalt Mixtures using different types of Rapid-Setting Polymer-Modified Asphalt Emulsion for Spray Injection Application (속경성 바인더 유형에 따른 긴급보수용 스프레이 패칭 상온 재활용 아스팔트 혼합물(RAP)의 성능 평가)

  • Kim, Doo Yeol;Jeon, Ji Seong;Lee, Sang Yum;Rhee, Suk Keun;Kwon, Bong Ju
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.75-85
    • /
    • 2017
  • PURPOSES : The purpose of this study was to determine the optimum mix design of the content of 100 % reclaimed asphalt pavement (RAP) for spray injection application with different binder types. METHODS : Literature review revealed that spray injection method is the one of the efficient and economical methods for repairing a small defective area on an asphalt pavement. The Rapid-Setting Polymer modified asphalt mixtures using two types of rapid setting polymers-asphalt emulsion and a quick setting polymer asphalt emulsion-were subjected to the following tests to determine optimum mix designs and for performance comparison: 1) Marshall stability test, 2) Retained stability test, 3) Wet track abrasion test, and 4) Dynamic stability test. RESULTS and CONCLUSIONS : Type A, B, and C emulsions were tested with different mix designs using RAP aggregates, to compare the performances and determine the optimum mix design. Performance of mixtures with Type A emulsion exceeded that of mixtures with Type B and C emulsion in all aspects. In particular, Type A binder demonstrated the highest performance for WTAT at low temperature. It demonstrated the practicality of using Type A mixture during the cold season. Furthers studies are to be performed to verify the optimum mix design for machine application. Differences in optimum mix designs for machine application and lab application will be corrected through field tests.

Optimization of Enzymatic Hydrolysis Conditions for Production of Angiotensin-I Converting Enzyme Inhibitory Peptide from Casein

  • Do, Jeong-Ryong;Kim, Ki-Ju;Kim, Hyun-Ku;Kim, Young-Myoung;Park, Yeung-Beom;Lee, Yang-Bong;Kim, Seon-Bong
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.565-571
    • /
    • 2007
  • This study was carried out to investigate an optimum condition for the high angiotensin-l converting enzyme (ACE) inhibitory activity and the yield on enzyme concentration, casein concentration, and hydrolysis time. The optimum condition was performed by response surface methodology for acquirement of casein hydrolysate of milk which shows high ACE inhibitory activity, Among 8 tested enzymes, Protamex showed the highest activation degree with 77.03 unit/g from casein. Their hydrolysis degrees of flovourzyme 500MG, protamex, mixture from 1% casein were 85.5, 88.5, and 93.5%, respectively. The ranges of enzyme concentration (0.25-1.25%), casein concentration (2.5-12.5%), and hydrolysis time (20-100 min) as 3 independent variables through preliminary experiments of the yield of casein hydrolysate and ACE inhibitory activity, and it shows optimum response surface at a saddle point. It shows enzyme concentration (0.64%), casein concentration (8.38%), and hydrolysis time (55.81 min) in the yield aspect and showed the highest activity at enzyme concentration (0.86%), casein concentration (5.97%), and hydrolysis time (63.86 min) in ACE inhibitory aspect. The $R^2$ value of a fitted optimum formula on the hydrolysis yield was 0.9751 as the significant level of 1%. The $R^2$ value of a fitted optimum formula on ACE inhibitory activity is 0.8398, and the significance is recognized in the range of 5%.

Physical Properties of Cotton Fabric Treated with BTCA and P olyalkyleneoxide-modified amino-functional silicone (BTCA와 실리콘 처리 면직물의 물리적 성질)

  • 남승현;유효선
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.4
    • /
    • pp.525-534
    • /
    • 1998
  • Cotton fabrics were finished with mixture of BTCA(1,2,3,4,-butanetetracarboxylic acid) and polyalkyleneoxide-modified amino-functional silicone by pad-dry-cure process to achieve better DP performance with a higher retention of physical properties as compared to those of finished with BTCA alone. The results indicated that BTCA improved the wrinkle recovery but reduced significantly the tensile and tear strength of the treated fabrics. Whereas silicone imparted a lower wrinkle recovery, a lower loss of tensile strength than BTCA, in addition improved considerably the tear strength owing to reduction in inter-fiber and/or inter-yarn frictional forces. The concentration and curing temperature needed to enhance physical properties were as follows; for BTCA treatments 6%, at 18$0^{\circ}C$, for silicone treatments 1% at 14$0^{\circ}C$. This optimum concentration of silicone was observed by using the mixture of BTCA and silicone. The wrinkle recovery and DP rating of cotton fabrics treated with mixture of 4% BTCA and 1% silicone at a curing temperature of 17$0^{\circ}C$ was similar to those of treated with 6% BTCA at a curing temperature of 18$0^{\circ}C$, and other performance properties observed were; an increase in tensile strength, extension, toughness, abrasion resistance and moisture regain due to the reduction of BTCA concentration and curing temperature, futhermore an improvement in bending and surface properties due to the lubricating effect of silicone. On the other hand 1% aqueous silicone solution showed the lowest surface tension. Such nonionic surface activity resulted in a more uniform and rapid deposition of BTCA on the fiber or fabric.

  • PDF

Preparation of α-Si3N4 Powder in Reaction System Containing Molten Salt by SHS - Part 2. Scale-Up (용융염계에서 자전연소합성법에 의한 α-Si3N4분말의 제조 - 2. 반응물의 증가)

  • Yun Ki Seok;Yang Beom Seok;Park Young Cheol;Won Cang Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.703-708
    • /
    • 2004
  • The variation of the reaction pressure and reaction product during the reaction was investigated according to the total mass of the reaction mixture at the optimum composition for the preparation of u-Si3N4 powder which had been confirmed in the former investigation; 'Preparation of $\alpha$-Si$_3$N$_4$ powder in reaction system containing molten salt by SHS - part 1. synthesizing of powder'. When the total mass of the reaction mixture was 100g, the minimum pressure for a complete reaction was 60atm in 5L reactor, whereas the reaction was incomplete in the case that the mass exceeded 200g because of pressure increase. Also, as the mass of the reaction mixture increased, the reactivity linearly decreased. Hence, the complete reaction was realized by decreasing an initial $N_2$ pressure, and thus obtained minimum initial pressure was recorded 20 atm for the initial mixture of 500g. The reason of the incomplete reaction with pressure Increase was found to be that NH$_4$Cl vapour which was suppressed by the gas pressure acted as a diluent.