Browse > Article
http://dx.doi.org/10.5338/KJEA.2008.27.1.066

Effects of Fly Ash and Gypsum Mixture on Reducing Phosphorus Loss from Paddy Soil  

Lee, Yong-Bok (National Institute of Agricultural Science & Technology, RDA)
Lee, Seul-Bi (Division of Applied Life Science(BK21 Program), Gyeongsang National University)
Oh, Ju-Hwan (Division of Applied Life Science(BK21 Program), Gyeongsang National University)
Lee, Chang-Hoon (Yeongnam Agricultural Research Institute, National Institute of Crop Science)
Hong, Chang-Oh (Division of Applied Life Science(BK21 Program), Gyeongsang National University)
Kim, Pil-Joo (Division of Applied Life Science(BK21 Program), Gyeongsang National University)
Publication Information
Korean Journal of Environmental Agriculture / v.27, no.1, 2008 , pp. 66-71 More about this Journal
Abstract
Phosphorus transfer from agricultural soils to surface waters is an important environmental issue. Fly ash and phospho-gypsum which are industrial by-product were investigated as a means of reducing dissolved phosphorus in arable soil. To determine the optimum mixing ratio of fly ash(FA) and phospho-gypsum(PG) for reducing dissolved reactive P(DRP) in soil, various mixture ratio of FA and PG were mixed with two soil. The DRP content and pH in soils were analysed after 3 weeks incubation under flooding condition. Although DRP content in soils was significantly decreased by FA-PG mixture compared with control, there were no significant difference among the FA and PG mixture ratio of 75:25, 50:50, and 25:75. The mixture of 75% FA and 25% PG was selected for field test. A field experiment was carried out to evaluate the reducing DRP content in paddy soil to which 0(NPK), 20(FG 20), 40(FG 40), and 60(FG 60) Mg $ha^{-1}$ of the mixture were applied. The DRP content was reduced by 31% at the application rate of 60 Mg $ha^{-1}$. In contrast to deceasing DRP, Ca-P content increased significantly with the mixture application rate. After rice harvesting, available $SiO_2$, P, and exchangeable Ca content in soil increased significantly with application rate due to high content of Si, P, and Ca in the mixture. Mixtures of fly ash and gypsum should reduce P loss from paddy soil and increase soil fertility.
Keywords
Fly ash; phospho-gypsum; dissolved reactive phosphorus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arai, Y., Livi, K.J.T., and Sparks, DL. (2005) Phosphate reactivity in long-term poultry litter-amended southern Delaware sandy soils. Soil. Sci. Soc. Am. J. 69:616-629   DOI   ScienceOn
2 Higgins, B.P.J., Mohleji, S.C., and Irvine, R.L. (1976) Lake treatment with fly ash, lime, and gypsum. J. Water Pollut. Control Fed. 48:2153-2164
3 Sharpley, A.N., Robinson, J.S., and Smith, S.J. (1995) Phosphorus dynamics in agricultural soils and effects on water quality. Geoderma 67:1-15   DOI   ScienceOn
4 Edwards, D.R. and Daniel, T.C. (1993) Effects of poultry litter application rate and rainfall intensity on quality of runoff form fescuegrass plots. J. Environ. Qual. 22:361-365   DOI   ScienceOn
5 Pote, D.H. and Daniel, T.C. (2000) Analyzing for dissolved reactive phosphorus in water samples. In G.M. Pierzynski (ed). Methods of phosphorus analysis for soils, sediments, residuals, and waters. Kansas State Univ., Manhattan
6 RDA. (1988) Methods of soil chemical analysis. National Institute of Agriculture Science and Technology, RDA, Suwon
7 Penn, C.J., Mullins, G.L., Zelazny, L.W., and Sharpley, A.N. (2006) Estimating dissolved phosphorus concentrations in runoff from three physiographic resgins of Virgina. Soil Sci. Soc. Am. J. 70:1967-1974   DOI   ScienceOn
8 Chen, J., Kong, H., Wu, D., Chen, X., Zhang, D., and Sun, Z. (2007) Phosphate immobilization from aqueous solution by fly ashes in relation to their composition. J. Hazardous Materials. B139:293-300
9 Tsitouridou, R. and Georgiou, J. (1988) Contribution to the study of phosphate sorption by three Greek fly ashes. Toxicol. Environ. Chem. 17:129-138   DOI   ScienceOn
10 Smith, D.R., Moore, P.A., Griffis, C.L., Daniel, T.C., Edwards, A.N., and Boothe, D.L. (2001) Effects of alum and aluminum chloride on phosphorus runoff from swine manure. J. Environ. Qual. 30:992-998   DOI   ScienceOn
11 Dou, Z., Zhang, G.Y., Stout, W.L., Toth, J.D., and Ferguson, J.D. (2003) Efficacy of alum and coal combution by-product in stabilizing manure phosphorus. J. Environ. Qual. 32:1490-1497   DOI   ScienceOn
12 Watanabe, M. and Kato, N. (1983) Research on the behavior of applied phosphorus fertilizer in soil. Miscellany Publication of Fertilizer Research. Division. National Institute of Agriculture Science Service. 1-31, p. 251
13 Deren, C.W., Datnoff, L.E., Snyder, G.H., and Marin, F.G. (1994) Silicon concentration, disease, and yield components of rice genotypes grown on flooded organic histosols. Crop Sci. 34:733-737   DOI
14 Kukier, U., Sumner, M.E., and Miller, W.P. (1994) Boron release from fly ash and its uptake by corn. J. Environ. Qual. 23:596-603   DOI   ScienceOn
15 Mengel, K. and Kirkby, E.A. (1987) Further elements of importance. In Priciple of plant nutrition, 4th, ed. K. Mengel(ed), p. 577-582. IPI, Bern, Switzerland
16 Cheung, K.C. and Venkitachalam, T.H. (2000) Improve phosphate removal of sand infiltration system using alkaline fly ash. Chemosphere 41:243-249   DOI   ScienceOn
17 Elrashidi, M.A., Baligar, V.C., Korcak, R.F., Persaud, N., and Ritchey, K.D. (1999) Chemical composition of leachate of dairy manure mixed with fluidized bed combustion residue. J. Environ. Qual. 28:1243-1251   DOI
18 Favaretto, N., Norton, L.D., Joern, B.C., and Brouder, S.M. (2006) Gypsum amendment and exchangeable calcium and magnesium affecting phosphorus and nitrogen in runoff. Soil Sci. Soc. Am. J. 70:1788-1796   DOI   ScienceOn
19 Plank, C.O. and Martens, D.C. (1973) Amelioration of soils with fly ash. J. Soil Water Conserv. 177-179
20 Adriano, D.C., Page, A.L., Elseewi, A.A., Chang, A.C,, and Straughan, I. (1980) Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems. Rev. J. Environ. Qual. 9:333-344
21 James, B.R., Rabenhorst, M.C., and Frigon, G.A. (1992) Phosphorus sorption by peat and sand amended with iron oxide or steel wool. Water Environ. Res. 64:699-705   DOI
22 Moore, P.A. and Miller, D.M. (1994) Decreasing phosphorus solubility in poultry litter with aluminum, calcium and iron amendments. J. Environ. Qual. 23:325-330   DOI   ScienceOn
23 Wakastuki, T., Esumi, H., and Omura, S. (1993) High performance and N. P removable on-site domestic wastewater treatment system by multisoil-lwyering method. Water Sci. Technol. 27:31-40
24 Stout, W.L., Sharpley, A.N., and Pionke, H.B. (1998) Reducing soil phosphorus solubility with coal combustion by-products. J. Environ. Qual. 27:111-118   DOI   ScienceOn
25 김용웅 (1996) 농업 환경에 미치는 비료의 영향과 대책. 우리 나라 농업환경의 문제점과 개선방안. '96 농업환경 심포지움. 한국환경농학회. p. 57-81