• Title/Summary/Keyword: optimum length

Search Result 1,483, Processing Time 0.026 seconds

Optimization of a Thermally Asymmetric Rectangular Fin: Based on Fixed Fin Height

  • Kang, Hyung-Suk
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.3
    • /
    • pp.145-151
    • /
    • 2005
  • A thermally asymmetric straight rectangular fin is analysed and optimized using the two-dimensional separation of variables method. The optimum heat loss is presented as a function of bottom to top Biot number ratio, fin base length and top Biot number. Decreasing rate of the optimum fin length with the increase of the fin base length is listed. The optimum fin tip length is shown as a function of bottom to top Biot number ratio, fin base length and tip to top Biot number ratio. One of the results shows that the optimum heat loss and the actual optimum fin length decrease while the optimum fin tip length increases as the fin base length increases.

Simplified method to design laterally loaded piles with optimum shape and length

  • Fenu, Luigi;Briseghella, Bruno;Marano, Giuseppe Carlo
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.119-129
    • /
    • 2019
  • Optimum shape and length of laterally loaded piles can be obtained with different optimization techniques. In particular, the Fully Stress Design method (FSD) is an optimality condition that allows to obtain the optimum shape of the pile, while the optimum length can be obtained through a transversality condition at the pile lower end. Using this technique, the structure is analysed by finite elements and shaped through the FSD method by contemporarily checking that the transversality condition is satisfied. In this paper it is noted that laterally loaded piles with optimum shape and length have some peculiar characteristics, depending on the type of cross-section, that allow to design them with simple calculations without using finite element analysis. Some examples illustrating the proposed simplified design method of laterally loaded piles with optimum shape and length are introduced.

Control of Shrinkage Cracking of Cement Composites with Different Length Mixture of PVA Fibers (서로 다른 길이의 PVA 섬유 혼합에 따른 시멘트 복합체의 균열제어 특성)

  • Won, Jong-Pil;Kim, Myung-Kyun;Park, Chan-Gi;Kim, Wan-Young;Park, Kyoung-Hoon;Jang, Chang-Il
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.405-408
    • /
    • 2006
  • The purpose of this study was to determine the optimum length distribution of hybrid PVA(Poly vinyl alcohol) fiber. To produce blended PVA fiber length, first the length distribution of PVA fiber in the cement composites were identified in an experimental study based on simplex lattice design. Among the different length distributions investigated, fiber length was found to have statistically significant effect on plastic shrinkage cracking of cement composites. Subsequently, Complex analysis techniques were used to devise an experimental program that helped determine the optimum combinations of the selected fiber length distribution based on plastic shrinkage crack. The optimum blended PVA length ratio was 0.0146% 4mm fiber, 0.0060% 6-mm fiber, 0.0285% 8-mm fiber, and 0.0209% 12-mm fiber.

  • PDF

Improving the behavior of buckling restrained braces through obtaining optimum steel core length

  • Mirtaheri, Masoud;Sehat, Saeed;Nazeryan, Meissam
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.401-408
    • /
    • 2018
  • Concentric braced frames are commonly used in steel structures to withstand lateral forces. One of the drawbacks of these systems is the possibility that the braces are buckled under compressive loads, which leads to sudden reduction of the bearing capacity of the structure. To overcome this deficiency, the idea of the Buckling Restrained Brace (BRB) has been proposed in recent years. The length of a BRB steel core can have a significant effect on its overall behavior, since it directly influences the energy dissipation capability of the member. In this study, numerical methods have been utilized for investigation of the optimum length of BRB steel cores. For this purpose, BRBs with different lengths placed into several two-dimensional framing systems with various heights were considered. Then, the Response History Analysis (RHA) was performed, and finally, the optimum steel core length of BRBs and its effect on the responses of the overall system were investigated. The results show that the shortest length where failure does not occur is the best length that can be proposed as the optimum steel core length of BRBs. This length can be obtained through a formula which has been derived and verified in this study by both analytical and numerical methods.

Analysis and Optimization based on the Fixed Fin Base Height for a Triangular Fin (삼각 핀의 해석과 고정된 핀 바닥 높이에 기준한 최적화)

  • Kang, Hyung-Suk
    • New & Renewable Energy
    • /
    • v.3 no.1 s.9
    • /
    • pp.13-19
    • /
    • 2007
  • A triangular fin with variable fin base thickness and base height is analyzed and optimized for the fixed fin base height using a two-dimensional analytical method. At the middle of the fin length, the variation of the temperature along the fin height is listed. The influences of the fin length, base thickness and base height on the heat loss and fin efficiency are analyzed, The optimum heat loss, corresponding optimum efficiency and optimum fin length as a function of the fin base thickness are presented. The optimum heat loss and optimum fin tip length as a function of the convection characteristic number are represented.

  • PDF

An Experimental Study on the Performance of Inverter Heat Pump with a Variation of Frequency and Capillary Size

  • Choi, Jong-Min;Kim, Yong-Chan;Kim, Jong-Yup
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.27-35
    • /
    • 1998
  • An experimental study was performed to investigate the optimum cycle of an inverter heat pump as a function of frequency. The performance of the inverter heat pump with the rated cooling capacity of 4,141 W(3,550kcal/h) was measured with a variation of frequency, indoor and outdoor temperature, and length of capillary tube in the psychrometric test room. As a base case, the inverter heat pump with the standard capillary length of l,000mm(optimum size for the frequency of 60Hz) and ASHRAE Test condition "A" was tested by varying frequency from 30Hz to 80Hz. Then, the optimum cycles were investigated by varying the length of capillary tube at each frequency level of 30, 60 and 80Hz. Based on the experimental data, the change of system characteristics between the optimum and the base case were analyzed for each selected frequency level. Generally, for low frequency level(30Hz), the longer length of the capillary tube compared with the standard size showed the higher energy efficiency ratio(EER), while for high frequency level(80Hz) the shorter length of the capillary tube showed the higher EER.

  • PDF

An experimental study on the performance of inverter heat pump with a variation of frequency and capillary size (인버터 열펌프의 주파수 및 모세관 길이 변화에 따른 시스템 성능특성의 실험적 연구)

  • Choi, J.M.;Kim, Y.C.;Kim, J.Y.;Bae, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.64-72
    • /
    • 1997
  • An experiment study was performed to investigate the optimum cycle of an inverter heat pump as a function of frequency. The performance of the inverter heat pump with the rated cooling capacity of 4141W(3550kcal/h) was measured with a variation of frequency, indoor and outdoor temperature, and length of capillary tube in the psychrometric test room. As a base case, the inverter heat pump with the standard capillary length of 1000mm which was optimum size for the frequency of 60Hz and ARHRAE Test condition A was tested by varying frequency from 30Hz to 80Hz. Then, the optimum cycle was invesigated by varying the length of capillary tube at each frequency levels of 30, 60 and 80Hz. Based on the experimental data, the change of system characteristics between the optimum and the base case were analyzed for each selected frequency levels. Generally, for low frequency level(30Hz), the longer length of the capillary tube compared with the standard size showed the higher EER, while for high frequency level(80Hz) the shorter length of the capillary tube showed the higher EER.

  • PDF

A Study on the Optimized Biarc Curve Fitting of Involute Curve (인벌류트 곡선의 Biarc Curve Fitting 최적화에 관한 연구)

  • Cho, Seung-Rae;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.71-78
    • /
    • 1999
  • The determination of the optimum biarc curve passing through a given set of points along involute curve is studied. The method adopted is that of finding the optimum number of span and the optimum length of the span such that error between the biarc curve and involute curve minimum. Iterative method is effectively used to find the optimim number and length of the span on involute curve with reduced length of NC-code.

  • PDF

A Study on the Assessment of Optimum Berth Length for Incheon Container Terminal of the Kyeong-In Port (경인항 인천컨테이너터미널의 최적 부두길이 산정에 관한 연구)

  • Kim, Se-Won;Park, Young-Soo;Kim, Tae-Min
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.23 no.2
    • /
    • pp.210-220
    • /
    • 2011
  • The Keyongin Inland waterway will connect with Han-River and the Northen part of the Incheon-seaway and this way will be opened at the early of October this year. In this regard, the Incheon container terminal is under constructing for 1,000 TEU & 550 TEU container vessels at the place of leftside of the Seohae lockgate. However the terminal length is not still fixed due to at a great expenses of construction and dosposal matter of the dredged soil. So this paper will suggest the optimum berth length by using the full mission shiphandling simulator for berthing and unberthing shipmaneuvering. And also evaluates the design standard of harbor construction rules and analysis optimum berth length against ship's length for safe shiphandling at terminals in accordance with the customary practices of the major ports in Korea.

Optimization of Thermoelectric Elements for Thermoelectric Coolers (열전냉동기용 열전요소의 최적화)

  • Jeong, Eun-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.5
    • /
    • pp.409-414
    • /
    • 2012
  • A theoretical investigation to optimize thermoelectric elements for thermoelectric coolers was performed using a new one-dimensional analytic model. Mathematical expressions for the optimum current and the optimum length of a thermoelectric element, which maximize the coefficient of performance of thermoelectric coolers, were obtained. The optimum current is expressed in terms of the cooling load for a thermoelectric element, the hot and cold side temperatures and thermoelectric properties, but not the length of a thermoelectric element. The optimum current is proportional to the cooling load and decreases as the temperature difference between the hot and cold sides decreases. It is also shown that the optimum length of a thermoelectric element decreases as the cooling load increases.