• Title/Summary/Keyword: optimum harvesting time

Search Result 112, Processing Time 0.031 seconds

Effects of Harvesting Time on Yields of Carthami Flos and Grain in Cathamus tinctoris L. (잇꽃 수확시기(收穫時期)에 따른 홍화(紅花) 및 종실(種實) 수량(收量))

  • Choi, Byoung-Ryourl;Park, Kyeong-Yeol;Kang, Chang-Sung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.3
    • /
    • pp.232-236
    • /
    • 1997
  • This experiment was conducted to determinate the optimum harvesting time of Carthami Flos and grain in safflower. In dry Carthami Flos yields harvested at different days after flowering, threre was no significant difference between 2 days and 4 days, however, yield harvested at 6 days was decreased significantly compared with 2 days after flowering. As the harvesting time were delayed, lightness (L') and redness (a') of dry Carthami Flos were decreased but yellowness (b') of that was increased. Color differences (${\Delta}E'ab$) of dry Carthami Flos between harvesting days after flowering were not visible between 4 days and 6 days but between those (4 days and 6 days) and 2 days were visible. As the result, the optimum harvesting time of Carthami Flos was 4 days after flowering. Grain yields and its components were affected by not harvesting Carthami Flos but grain harvesting time. Threre was no significant difference in number of grain per flower head, percentage of ripened grain between grain harvesting time. However, weight of 1000 grains and grain yields increased until 20 days after flowering. As a conclusion, the optimum harvesting time was 4 days after flowering for Carthami Flos and 20 days for grain regardless Carthami Flos harvesting time.

  • PDF

Determination of Seeding and Harvesting Time in Snap Bean

  • Lee, Sang-Soon;Lee, Jeong-Dong;Hwang, Young-Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.1
    • /
    • pp.64-67
    • /
    • 2001
  • Snap bean is a new corp in Korea but believed to have a great deal of potentials for both domestic and overseas markets. The present study was performed to obtain the basic information about growth- and quality-related characteristics and to determinate the optimum seeding date and harvesting time for snap bean. Pod yield was significantly affected by seeding date. The highest pod yield was obtained from March 20 for determinate type and April 4 for indeterminate one, respectively, with the range of 13.0-23.7 t/ha. The pod length of indeterminate type was over 13cm, and the pod length was over 5 grams. The pod width for tested varieties was less than 1.0cm. Considering the pod growth characters such as pod length, pod width, and pod weight, the optimum harvesting time for immature pods of snap bean was supposed to be from 15 to 20 days after flowering. The daily yield of snap bean was begun to sharply increase from 15 days after the first flowering and the maximum yield was recorded at 30 days after flowering. For the accumulated yield, nearly 90% of total yield was obtained in 42 days after flowering.

  • PDF

Growth and Optimum Harvesting Time of Pod-edible Peas (Pisum sativum L.)

  • Moon, Hyun-Sook;Hwang, Young-Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.2
    • /
    • pp.93-96
    • /
    • 2000
  • The present study was performed to obtain the basic information about growth and quality related characteristics and optimum harvesting time for podedible pea which is a new crop in Korea but believed to have a great deal of potentials for both domestic and overseas markets. They can be consumed either as a fresh succulent vegetable or as tender green pods. The daily green pod yield of pod-edible peas started to increase from ten days after flowering and the maximum yield was recorded on 26 days after flowering. Ninety percent of pod yields could be harvested from 16 to 36 days after flowering. Mean green pod yield for the tested varieties was approximately 8.0 t/ha. Total vitamin C content of pod-edible peas showed continuously decreasing trends from five days after flowering. The highest sucrose content was obtained at ten days after flowering. The highest panel score based on sweetness, chewiness, and hardness for the processed green pods was shown at 10-15 days after flowering in all varieties tested, indicating that the optimum harvesting time for pod-edible peas was considered to be 10-15 days after flowering.

  • PDF

Determination of the Optimum Time of Harvest in Winter Rape (겨울 유채의 적정수확시기 결정에 관한 연구)

  • Chae, Y.A.;Kwon, Y.W.;Kwon, B.S.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.25 no.4
    • /
    • pp.81-85
    • /
    • 1980
  • Field experiment was conducted to determine the optimum harvesting time in winter rape (Brassica napus L.) by investigating the percent oil, 1, 000 seed weight, seed yield, dehiscent pod ratio and oil yield at 46, 50, 54, 58, 62, 66 and 70 days after flowering. Variation of all characters with days after flowering could be explained significantly by second degree polynomial equations. Percent oil and 1, 000 seed weight increased until 62 days after flowering and thereafter these traits decreased, while seed yield increased to 58 days after flowering and thereafter this trait decreased. This controversy was due to the drastic increase in dehiscent pods beyond 58 days after flowering which brought loss in seed yield. These results suggest that optimum harvesting time is 58 days after flowering and it should not be later than 60 days after flowering.

  • PDF

Barley Harvesting System by Use of Farm Machine (보리 기계화 수획체계 확립)

  • 류용환;하용웅;박무언
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.3
    • /
    • pp.261-266
    • /
    • 1984
  • To determine the optimum harvesting methods for high yield and quality, harvesting time were tested from 30 to 45 days after heading with five days intervals, using combine, binder and knap-sack type reaper (KSTR) in harvesting machines. Under the consideration of moisture contents of grain, operating time, grain loss, harvesting cost and quality, the optimum time of barley harvesting for mechanization was 35 to 40 days after heading. Combine and binder were recommended as the suitable machines for barley harvest in the operating efficiency and harvesting cost.

  • PDF

Determination of Optimum Timing of Paddy Harvesting Based on Grain Loss and Milling Quality (수호손실과 도정수율을 기초로 한 벼의 수호적기결정에 관한 연구)

  • 강화석;이종호;정창주
    • Journal of Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.56-80
    • /
    • 1977
  • This experimental work was conducted in order to find out the optimum time of harvest of Japonica-type (Akibare) and Indica-type(Tong-il) rice variety for three harvesting systems by investigating the harvesting losses and milling quality. The study was also concerned about the nature and amount of grain losses incurred during the each sequence of post-harvest technologies, and based on these result, a modification of existing systems giving a minimum grain loss was attempted. Binder, combine, and traditional systems were tested in this study and five grain moisture levels were disposed according to the decrease of grain moisture . The results are summarized as follows ; 1. The total losses of Akibare variety were ranged from 1.1 to 1.5 per cent for the traditional harvesting system , 2.1 to 4.8 per cent for the harvesting system by use of binder, and 2.8 to 4.3 per cent for the harvesting system by use of combine as the grain moisture content was reduced from 24 to 15 percent. Milling recovery of the harvesting system by use of binder, 74.8 ∼75.7 percent, was a little higher as it was compared to that of traditional harvesting system, 74.3 ∼75.0per cent, and that of the harvesting system by use of combine, 73.8 ∼75.0 per cent. Head rice recovery of mechanically dried paddy samples was higher than that of sun-dried paddy samples. 2. The total losses of Tong-il variety were ranged from 3.8 to 5.0 per cent for the traditional harvesting system, 5.2 to 10.0 percent for the system by use of binder, and 3.0 to 5.0 per cent for the system by use of combine as the grain moisture was reduced from 28 to 16 per cent. 3. Milling recovery of Tong-il variety harvested by the traditional harvesting system was 72.3 ∼73.6 percent and it was lower when compared to that of 72.3∼75.0 per cent harvested by binder, and 73.0∼74.6 percent harvested by combine. 4. Head rice recovery of Tong-il variety harvested by the traditional harvesting system (58.

  • PDF

Studies on Seed Germination of Miscanthus sinensis Native to Jeju Island (제주도 자생 참억새의 종자발아에 관한 연구)

  • Lee, Jong Suk;Han, Seung Won
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2007
  • The study was conducted to find out the harvesting time, storage duration, cold treatment and sterilization on seed germination of Miscanthus sinensis. The optimum harvesting time of the Miscanthus seed in native to Jeju island was December. And the seed germination passible 3 years after harvesting. When the seeds had cold treatment, seed germination nate was 74% rather than 63% of non-treatment. For seed sterilization treatment, soaking in solution of Benomyl 7% during from 3 hours to 12 hours germinated 9% over. But the non-treatment on 24 hours treatment reduced the seed germination of Miscanthus sinensis.

Effect of Irradiation Time after Harvesting and Irradiation Dose on its Storability of Potatoes (감자 수확후(收穫後) 방사선(放射線) 조사시기(照射時期) 및 조사선량(照射線量)이 그 저장성(貯藏性)에 미치는 영향(影響))

  • Cho, Han-Ok;Byun, Myung-Woo;Kwon, Joong-Ho;Yang, Ho-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.11 no.4
    • /
    • pp.53-59
    • /
    • 1982
  • In order to determine the optimun condition for the long term storage of potatoes by irradiation combined with natural low temperature, the dose range and irradiation time after harvesting of two varieties were investigated. Although optimum dose of potatoes and was different according to the variety 12.5krad seemed optimum untill 15-30 day after harvesting and 15krad was for later than 45 day after harvesting. The sooner the irradiation was efficient after harvesting. Optimum dose irradiated group were better in change of sprouting, rotting, weightloss and shrivelling and was extended the storage period more than four months compared with control at natural low temperature storage room.

  • PDF

Determination of Optimum Timing of Paddy Harvesting Based on Grain Loss and Milling Quality (수호손실과 도정수율을 기초로 한 벼의 수호적기결정에 관한 연구)

  • Kang, Whoa Seok;Lee, Chong Ho;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.55-55
    • /
    • 1977
  • This experimental work was conducted in order to find out the optimum time of harvest of Japonica-type(Akibare) and Indica-type(Tong-il) rice variety for three harvesting systems by investigating the harvestirg losses and milling quality. The study was also concerned atout the nature and amount of grain losses incurred during the each sequence of post-harvest technologies, and based on these results, a modification of existing systems giving a minimum grain loss was attempted. Binder, combine, and traditional harvesting systems were tested in this study and five grain moisture levels were disposed according to the decrease of grain moisture. The results are summarized as follows: 1. The total losses of Akibare variety were ranged from 1.1 to 1.5 per cent for the traditional harvesting system, 2.1 to 4.8 percent for the harvesting system by use of binder, and 2.8 to 4.3 percent for the harvesting system by use of combine as the grain moisture content was reduced from 24 to 15 per cent. Milling recovery of the harvesting system by use of binder, 74.8~ 75.7 percent, was a little higher as it was compared to that of traditional harvesting system, 74. 3~75. 0 percent, and that of the harvesting system by use of combine, 73.8~ 75.0 per cent. Head rice recovery of mechanically dried paddy samples was higher than that of sun-dried paddy samples. 2. The total losses of Tong-il variety were ranged from 3.8 to 5.0 per cent for the traditional harvesting system, 5.2 to 10.0 percent for the system by use of binder, and 3.0 to 5.0 perent for the system by use of combine as the grain moisture was reduced from 28 to 16 percent.

Studies on Combine Harvesting Methods of Barley in Double Cropping Paddy II. Determination of the Optimum Harvesting Date by Combine with Desiccant (Reglone) Application Based on Grain Yield and Quality (답리작 맥류 기계수확방법 확립에 관한 연구 제2보 건조제 처리와 콤바인 수확시기가 수량 및 품질에 미치는 영향)

  • 이강세;박문수
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.3
    • /
    • pp.247-253
    • /
    • 1982
  • This experiment was conducted to find out the optimum date for Combine harvesting of barley in the double cropping paddy field. By the consideration of moisture contents of grain, grain loss, rate of unhulled grain, and discoloring of external plant parts, the optimum date for harvesting was observed to be about 41 days after heading under natural condition. On the other hand, when desiccant was applied on the 34 days after heading, it could be shortened natural harvesting time for 3 days without any yield loss and grain qualities, too.

  • PDF