• Title/Summary/Keyword: optimized design method

Search Result 1,614, Processing Time 0.024 seconds

Optimization of Boss Shape for Damage Reduction of the Press-fitted Shaft End (압입축 끝단의 손상저감을 위한 보스부 형상 최적설계)

  • Byon, Sung-Kwang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.85-91
    • /
    • 2015
  • The press-fit shaft is an important part used in automobiles, vessels, and trains. This study proposes an optimized design method to reduce damage that may occur in the press-fitted shaft by modifying the shape of the boss step of the press-fitted shaft. To reduce the time and cost of running the optimized design method, an approximate design optimization is applied and an optimized algorithm is generated using a genetic algorithm that is widely used in engineering fields and an approximate model using a response surface method. The planned experiments for the data that are needed to generate the approximate model use a central composite design (CCD) and Latin hypercube sampling (LHS), and the results of the approximate optimization using the above two design of experiments are to be compared.

Optimal Design of Permanent Magnet Actuator Using Parallel Genetic Algorithm (병렬유전 알고리즘을 이용한 영구자석형 액추에이터의 최적설계)

  • Kim, Joong-Kyoung;Lee, Cheol-Gyun;Kim, Han-Kyun;Hahn, Sung-Chin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.40-45
    • /
    • 2008
  • This paper presents an optimal design of a permanent magnet actuator(PMA) using a parallel genetic algorithm. Dynamic characteristics of permanent magnet actuator model are analyzed by coupled electromagnetic-mechanical finite element method. Dynamic characteristics of PMA such as holding force, operating time, and peak current are obtained by no load test and compared with the analyzed results by coupled finite element method. The permanent magnet actuator model is optimized using a parallel genetic algorithm. Some design parameters of vertical length of permanent magnet, horizontal length of plunger, and depth of permanent magnet actuator are predefined for an optimal design of permanent magnet actuator model. Furthermore dynamic characteristics of the optimized permanent magnet actuator model are analyzed by coupled finite element method. A displacement of plunger, flowing current of the coil, force of plunger, and velocity of plunger of the optimized permanent magnet actuator model are compared with the results of a primary permanent magnet actuator model.

AERODYNAMIC DESIGN OPTIMIZATION OF ROTOR BLADE OA AIRFOILS (로터 블레이드 OA 익형의 공력 최적 설계)

  • Sa, J.H.;Park, S.H.;Kim, C.J.;Yun, C.Y.;Kim, S.H.;Kim, S.;Yu, Y.H.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.25-31
    • /
    • 2009
  • Numerical optimization of rotor blade airfoils is performed with a response surface method for helicopter rotor. For the baseline airfoils, OA 312, OA 309, and OA 407 airfoils are selected and optimized to improve aerodynamic performance. Aerodynamic coefficients required for the response surface method are obtained by using Navier-Stokes solver with k-$\omega$ Shear Stress Transport turbulence model. An optimized airfoil has increased drag divergence Mach number. The present design optimization method can generate an optimized airfoil with multiple design constraints, whenever it is designed from different baseline airfoils at the same design condition.

The Optimized Design Method of Vehicle for Weight-Reduction (무게절감을 위한 차량 최적 설계 기법)

  • Lee, Jeong-Ick
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.376-381
    • /
    • 2007
  • The geometric configuration in the weight-reduced structure is very required to be started from the conceptual design with low cost, high performance and quality. In this point, a structural-topological shape concerned with conceptual design of structure is important. The method used in this paper combines three optimization techniques, where the shape and physical dimensions of the structure and material distribution are hierachically optimized, with the maximum rigidity of structure and lightweight.

Optimization Technique of Passenger Car Suspension System Considering J-Turn Handling Performances (J-선회 조종성능을 고려한 승용차 현가장치의 최적화 기법)

  • Lee, Sang-Beom;Lee, Chun-Seung;Yim, Hong-Jae;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.267-273
    • /
    • 2004
  • The purpose of this paper is to develop a systematic design method for the suspension system hard points and compliance elements, which have great influence on the handling stability of a vehicle. In this paper, a method to optimize J-turn responses is presented based on the principles of design of experiments, multi-body dynamic analysis and optimum design technique. The design variables associated with the J-turn maneuver are selected through the experimental design sensitivity analysis using the perturbation method. An objective function is defined as an approximate function for the J-turn characteristics using the TSA(Taylor series approximation). The values of the design variables, which make the optimized J-turn characteristics, are obtained using the conjugate gradient method. The result of the J-turn simulation shows that the optimized vehicle has more improved handling stability than the optimized vehicle.

Design of Low Frequency Flat Speaker by Piezofilm (Piezofilm 을 이용한 저주파 평면 스피커의 설계)

  • Hwang, Joon-Seok;Lee, Sung;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.191-194
    • /
    • 2000
  • In this study, experimental verification of performance of flat speaker has been conducted. The piezofilm (PVDF) actuator has been designed to prevent the distortion of sound and make the frequency response of radiated sound flat. The electrode pattern of piezofilm actuator is optimized to satisfy the design objective. The formulation of design method is based on the coupled finite element and boundary element method and electrode pattern is optimized by genetic algorithm. The flat speaker with optimized piezofilm actuator has been manufactured. The sound pressure level at the distance of 50cm is measured using microphone and compared with the result of numerical simulation.

  • PDF

Design Method for the Optimized Acoustic Matching Layers of UT Probes (비파괴 검사용 초음파 탐촉자에서의 정합층 최적 설계법)

  • Park, Chi-seung;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.658-662
    • /
    • 2003
  • In this study, we have tried to find the optimized design variables of the matching layer which is important part of thickness mode ultrasonic transducer and finally reach the conclusion that the electrical property of piezo-element must be under consideration when the optimized acoustic impedance is estimated. Proper expression of the effective impedance of front load at free resonant frequency(: $Z_{f}$ $^{(0)}$ /) has been induced by introducing the principle of binomial multilayer transformer and gradient based numerical method is utilized to find the most acceptable value of $Z_{ f}$/$^{(0)}$ . Optimized point of acoustic impedance can be calculated directly from $Z_{f}$ $^{(0)}$ using some simple formula which we propose. We also verify our result by both numerical and experimental method and get a good enhancement especially it concern to the bandwidth of ultrasonic transducer.

Optimized LCL filter Design Method of Utility Interactive Inverter (계통연계형 인버터의 LCL필터 최적 설계기법)

  • Jung, Sang-Hyuk;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.103-109
    • /
    • 2013
  • The conventional LCL filter design method of the utility interactive inverter considers only harmonics attenuation of the current injected to the grid. However, in case of utility-interactive inverter with critical load the voltage quality of the critical load should also be considered for LCL filter design. Also, considering cost and volume of LCL filters. it is important to have minimum values of inductance and capacitance as far as the harmonic standards are satisfied. In this paper a LCL filter design method is proposed to satisfy not only the harmonic standards of the grid current during the grid-connected mode but the voltage quality of the critical load during grid-connected mode and stand-alone mode. With the proposed method optimized values of LCL filters could be obtained by applying weighting factor to voltage ripple across the critical load, inductor volume, amount of reactive current and system bandwidth.

Topology Optimization of an Electromagnetic Coupler Considering Force Direction (힘의 방향성을 고려한 전자기 커플러의 위상 최적화)

  • Yang, Seung-Jin;Yoo, Jeong-Hoon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.230-235
    • /
    • 2006
  • The machine locking system is an important device for the safety of persons using the machine. In this study, a locking system using electromagnetic fields is proposed to decrease the defects and the cost for repairing and maintenance of the existing locking system using structural mechanism. We analyze the electromagnetic locking system and calculate the generated force considering direction by the finite element method. Also, we set up two design domains for the topology optimization; first domain is optimized to reduce the volume and the other is optimized to maximize the generated force keeping the volume, especially. The optimal design is obtained by integration of the two optimized results. An improved design is obtained by the optimal topology and it is confirmed by comparison with the initial locking system.

  • PDF

An Efficient Filter Design via Optimized Rational-Function Fitting, without Similarity Transformation

  • Kahng Sung-Tek
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.3
    • /
    • pp.155-159
    • /
    • 2006
  • An efficient method is presented to design filters without the similarity transform of their coupling coefficient matrix as circuit parameters, which is very tedious due to pivoting and deciding rotation angles needed during the iterations. The transfer function of a filter is directly used for the design and its desired form is derived by the optimized rational-function fitting technique. A 3rd order coaxial lowpass filter is taken as an example to validate the proposed method.