• 제목/요약/키워드: optimized design

검색결과 4,187건 처리시간 0.029초

퍼지다항식 뉴론 기반의 유전론적 최적 자기구성 퍼지 다항식 뉴럴네트워크 (Genetically Opimized Self-Organizing Fuzzy Polynomial Neural Networks Based on Fuzzy Polynomial Neurons)

  • 박호성;이동윤;오성권
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권8호
    • /
    • pp.551-560
    • /
    • 2004
  • In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, and a collection of the specific subset of input variables) and addresses specific aspects of parametric optimization. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series), A comparative analysis reveals that the proposed SOFPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literatures.

비대칭 벽식구조의 최적 비틀림 설계 (An optimized torsional design of asymmetric wall structures)

  • 조봉호;홍성걸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.327-334
    • /
    • 2002
  • This paper develops an optimized torsional design method of asymmetric wall structures considering deformation capacities of walls. Contrary to the current torsional provisions, a deformation based torsional design is based on the assumption that stiffness and strength are dependent. Current torsional provisions specify two design eccentricity of stiffness to calculate the design forces of members. But such a methodology leads to an excessive over-strength of some members and an optimal torsional behavior is not ensured. Deformation-based torsional design uses displacement and rotation angle as design parameters and calculates base shear for inelastic torsional response directly. Because optimal torsional behavior can be defined based on the deformation of members, deformation based torsional design procedure can be applied to the optimal and performance-based torsional design. To consider the effect of accidental eccentricity, an over-strength factor is defined. The over-strength factor is determined from performance level, torsional resistance and arrangement of walls.

  • PDF

건축물 자동 공간계획 프로그램 개발에 관한 연구 (A Study on the Automatic Architectural Space Design Computer Program)

  • 임명구
    • 한국디지털건축인테리어학회논문집
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2007
  • In this study, we fill a person's shoes human knowledge use a computer fast and simple repetition in architecture design. this study are launched from a assumption that a optimized arrangement spaces are able to measure and gauge. but automatic space arrangement program is first step, we have a value that propose a differential cell space and valuation space and process of optimized space arrangement. the merits of this design process are as follows; 1. this program has a advantage high the building-to-land ratio land and business area in space design. 2.this program can design a economy building and calculate rent benefit and calculate cost of construction. 3. this program can adapt for digital GIS. this program can down cost in labor productivity. 5. a layman can design high level. the weak point of this design process are as follows; 1. the design product is simple box shape. 2. this program has a weak in large area and complicated land shape 3. complex use space design are difficult in this program.

  • PDF

전동차용 Blow-Down HVAC 덕트 시스템의 유동 균일도 향상을 위한 수치적 연구 (Numerical Study to Improve the Flow Uniformity of Blow-Down HVAC Duct System for a Train)

  • 김준형;노주현
    • 한국유체기계학회 논문집
    • /
    • 제19권1호
    • /
    • pp.18-23
    • /
    • 2016
  • A HVAC(Heating Ventilation and Air Conditioning) is adapted to increase the comfort of the cabin environment for train. The train HVAC duct system has very long duct and many outlets due to the shape of a train set. the duct cross section shape is limited by a roof structure and equipments. Therefore, the pressure distribution and flow uniformity is an important performance indicator for the duct system. In this study, the existing blow down type HVAC duct system for a train was supplemented to improve the flow uniformity by applying a design method combining design of experiment (DOE) with numerical analysis. The design variables and the test sets were selected and the performance for each test set was evaluated using CFD(Computational Fluid Dynamics). The influence of each design variable on the system performance was analysed based on the results of the performance evaluation on the test sets. Furthermore, the optimized model, whose the flow uniformity was improved was produced using the direct optimization(gradient-based method). Finally, the performance of the optimized model was evaluated using numerical analysis, and it was confirmed that its flow uniformity has indeed improved.

수면 지면 동시보행을 위한 Klann 기구 기반 주행메커니즘 최적설계 (Optimal Design of Klann-linkage based Walking Mechanism for Amphibious Locomotion on Water and Ground)

  • 김현규;정민석;신재균;서태원
    • 제어로봇시스템학회논문지
    • /
    • 제20권9호
    • /
    • pp.936-941
    • /
    • 2014
  • Walking mechanisms are very important for legged robots to ensure their stable locomotion. In this research, Klann-linkage is suggested as a walking mechanism for a water-running robot and is optimized using level average analysis. The structure of the Klann-linkage is introduced first and design variables for the Klann-linkage are identified considering the kinematic task of the walking mechanism. Next, the design problem is formulated as a path generation optimization problem. Specifically, the desired path for the foot-pad is defined and the objective function is defined as the structural error between the desired and the generated paths. A process for solving the optimization problem is suggested utilizing the sensitivity analysis of the design variables. As a result, optimized lengths of Klann-linkage are obtained and the optimum trajectory is obtained. It is found that the optimized trajectory improves the cost function by about 62% from the initial one. It is expected that the results from this research can be used as a good example for designing legged robots.

On the optimum performance-based design of eccentrically braced frames

  • Mohammadi, Reza Karami;Sharghi, Amir Hossein
    • Steel and Composite Structures
    • /
    • 제16권4호
    • /
    • pp.357-374
    • /
    • 2014
  • The design basis is being shifted from strength to deformation in modern performance-based design codes. This paper presents a practical method for optimization of eccentrically braced steel frames, based on the concept of uniform deformation theory (UDT). This is done by gradually shifting inefficient material from strong parts of the structure to the weak areas until a state of uniform deformation is achieved. In the first part of this paper, UDT is implemented on 3, 5 and 10 story eccentrically braced frames (EBF) subjected to 12 earthquake records representing the design spectrum of ASCE/SEI 7-10. Subsequently, the optimum strength-distribution patterns corresponding to these excitations are determined, and compared with four other loading patterns. Since the optimized frames have uniform distribution of deformation, they undergo less damage in comparison with code-based designed structures while having minimum structural weight. For further investigation, the 10 story EBF is redesigned using four different loading patterns and subjected to 12 earthquake excitations. Then a comparison is made between link rotations of each model and those belonging to the optimized one which revealed that the optimized EBF behaves generally better than those designed by other loading patterns. Finally, efficiency of each loading pattern is evaluated and the best one is determined.

계통연계형 인버터의 LCL필터 최적 설계기법 (Optimized LCL filter Design Method of Utility Interactive Inverter)

  • 정상혁;최세완
    • 전력전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.103-109
    • /
    • 2013
  • The conventional LCL filter design method of the utility interactive inverter considers only harmonics attenuation of the current injected to the grid. However, in case of utility-interactive inverter with critical load the voltage quality of the critical load should also be considered for LCL filter design. Also, considering cost and volume of LCL filters. it is important to have minimum values of inductance and capacitance as far as the harmonic standards are satisfied. In this paper a LCL filter design method is proposed to satisfy not only the harmonic standards of the grid current during the grid-connected mode but the voltage quality of the critical load during grid-connected mode and stand-alone mode. With the proposed method optimized values of LCL filters could be obtained by applying weighting factor to voltage ripple across the critical load, inductor volume, amount of reactive current and system bandwidth.

반응표면기법을 이용한 원심펌프 임펠러 최적설계 및 벌류트 설계 (Design Optimization of a Centrifugal Pump Impeller using RSM and Design of Volute)

  • 편권범;김준형;최영석;윤준용
    • 한국유체기계학회 논문집
    • /
    • 제15권3호
    • /
    • pp.39-45
    • /
    • 2012
  • In this study, optimization of the impeller and design of volute were carried out in order to improve the performance of a centrifugal pump. Design parameters from vane plane development for impeller design were selected, and effect of the design parameters on the performance of the pump was analyzed by using Response Surface Methodology(RSM) to optimized impeller. In addition, total pump design method was suggested by designing volute which was suitable for the optimized impeller through volute design where Stepanoff theory was applied and numerical analysis.

세일링 요트의 인간공학적 설계를 위한 기초 연구 (Fundamental Study for Ergonomic Design of Sailing Yacht)

  • 김동준;오현수;이유정;장성록
    • 한국안전학회지
    • /
    • 제28권2호
    • /
    • pp.73-77
    • /
    • 2013
  • Leisure activities alter overland tourism into marine tourism according to a rise in national income. It is expected that the leisure boat with period of introduction in marine tourism will be developed rapidly. It needs to unite with marine technology, optimized layout design, interior design and so on in order to build a yacht of high quality. Because optimized layout design and interior design technique increase the added value of the yacht, it needs to be convergence technology between Ergonomics, Sensibility Ergonomics, and design technique. In this study, we analyzed traffic line of crews in a sailing yacht and assessed working posture using OWAS, RULA and REBA tools. Also we suggested tips of Ergonomic design in the sailing yacht.

Design Optimization of an Impact Limiter Considering Material Uncertainties

  • Lim, Jongmin;Choi, Woo-Seok
    • 방사성폐기물학회지
    • /
    • 제20권2호
    • /
    • pp.133-149
    • /
    • 2022
  • The design of a wooden impact limiter equipped to a transportation cask for radioactive materials was optimized. According to International Atomic Energy Agency Safety Standards, 9 m drop tests should be performed on the transportation cask to evaluate its structural integrity in a hypothetical accident condition. For impact resistance, the size of the impact limiter should be properly determined for the impact limiter to absorb the impact energy and reduce the impact force. Therefore, the design parameters of the impact limiter were optimized to obtain a feasible optimal design. The design feasibility criteria were investigated, and several objectives were defined to obtain various design solutions. Furthermore, a probabilistic approach was introduced considering the uncertainties included in an engineering system. The uncertainty of material properties was assumed to be a random variable, and the probabilistic feasibility, based on the stochastic approach, was evaluated using reliability. Monte Carlo simulation was used to calculate the reliability to ensure a proper safety margin under the influence of uncertainties. The proposed methodology can provide a useful approach for the preliminary design of the impact limiter prior to the detailed design stage.