• Title/Summary/Keyword: optimization scheme

Search Result 1,157, Processing Time 0.026 seconds

An Optimization Algorithm for the Maximum Lifetime Coverage Problems in Wireless Sensor Network

  • Ahn, Nam-Su;Park, Sung-Soo
    • Management Science and Financial Engineering
    • /
    • v.17 no.2
    • /
    • pp.39-62
    • /
    • 2011
  • In wireless sensor network, since each sensor is equipped with a limited power, efficient use of the energy is important. One possible network management scheme is to cluster the sensors into several sets, so that the sensors in each of the sets can completely perform the monitoring task. Then the sensors in one set become active to perform the monitoring task and the rest of the sensors switch to a sleep state to save energy. Therefore, we rotate the roles of the active set among the sensors to maximize the network lifetime. In this paper, we suggest an optimal algorithm for the maximum lifetime coverage problem which maximizes the network lifetime. For comparison, we implemented both the heuristic proposed earlier and our algorithm, and executed computational experiments. Our algorithm outperformed the heuristic concerning the obtained network lifetimes, and it found the solutions in a reasonable amount of time.

SOLVING A SYSTEM OF THE NONLINEAR EQUATIONS BY ITERATIVE DYNAMIC PROGRAMMING

  • Effati, S.;Roohparvar, H.
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.399-409
    • /
    • 2007
  • In this paper we use iterative dynamic programming in the discrete case to solve a wide range of the nonlinear equations systems. First, by defining an error function, we transform the problem to an optimal control problem in discrete case. In using iterative dynamic programming to solve optimal control problems up to now, we have broken up the problem into a number of stages and assumed that the performance index could always be expressed explicitly in terms of the state variables at the last stage. This provided a scheme where we could proceed backwards in a systematic way, carrying out optimization at each stage. Suppose that the performance index can not be expressed in terms of the variables at the last stage only. In other words, suppose the performance index is also a function of controls and variables at the other stages. Then we have a nonseparable optimal control problem. Furthermore, we obtain the path from the initial point up to the approximate solution.

Online Turn-off Angle Control for Performance Optimization of the SRM (온라인 턴오프각제어를 통한 SRM의 성능최적화에 관한 연구)

  • Jeong B.H.;Cho G.B.;Baek H.R.;Kim D.H.;Kim D.G.;Kim P.H.
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.555-557
    • /
    • 2006
  • This paper represent improved On-line Turn off Angle control schemes for switched reluctance motors based on current control. For the purpose of the finding optimal commutation switching angle point, it is utilized him on and turn off position calculation with inductance vs. current vs. flux linkage analysis method. The goal of proposed paper is the maximization of the energy conversion per stroke and maximizing efficiency and obtaining approximately flat-topped current waveform. The proposed control scheme is demonstrated on a prototype experimental system.

  • PDF

A study on the Optimal Operation of Distirbution System Using the Modified Block Model Method (수정블럭 모델 법에 의한 배전계통의 최적운용에 관한 연구)

  • 송길영;홍상은;김재영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.4
    • /
    • pp.231-239
    • /
    • 1987
  • Distribution system is one of large and complicated sytem, consisted of a great number of components. Therefore efficient operation based on precise analysis and computation methods is indispensable accommodating growing loads. This paper describes an optimal operation problem to relieve overload flow in radial distribution systems by using modified block model. The problem is formulated as a network problem of synthesizing the optimal spanning tree in a graph, branch and bound method is used for the optimization. Especially modified block model proposed in this paper is validated more practical than conventional model. These methods can be applied to two types of distribution system problems such as, 1) planning problem to check the capability of relieving overload at normal rating, 2) emergency operation problem to determine switching scheme for minimizing customer loads affected by a fault. Examples of application to these problems are discussed.

  • PDF

Evaluation of Welding Residual Stress Characteristics of a Surge Line Elbow (밀림곡관 맞대기 용접부의 잔류응력 특성 평가)

  • Han, Chang-Gi;Chang, Yoon-Suk;Kim, Maan-Won;Lee, Kyoung-Soo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • Even though a lot of efforts have been devoted to evaluate welding residual stress characteristics of nuclear components, from the view point of accuracy, there are still some arguments in application of engineering estimation schemes. In this paper, three-dimensional finite element analyses (FEA) were carried out to predict residual stress distributions in butt welds of a typical surge line piping. Mesh optimization was conducted and subsequent analysis results such as the axial and hoop stress components along the weld center line and inner wall. Moreover, alternative evaluation was conducted by using three representative equations and their results were compared to those of FEA. Thereby, key parameters affecting to temperature profiles and residual stress distributions were derived as well as an optimum engineering estimation scheme was recommended.

Analysis of Isolation System in Distinct Multi-mechanism HIF Device (이종 복합 메카니즘 HIF 기구의 충격저감시스템 해석)

  • Choe Eui Jung;Kim Hyo-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.53-59
    • /
    • 2005
  • In this study, the isolation system for multi-mechanism HIF (high impulsive force) device has been investigated. For this purpose, parameter optimization process has been performed based on the simplified isolation system model under constraints of moving displacement and transmitted force. The design parameters for multi-mechanism HIF device have been derived with respect to HIF system I and HIF system II, respectively. In order to implement the dynamic absorbing system, the dual stage hydro-pneumatic damper and magnetorheological damper with semi-active control scheme are considered. Finally, the performance of the designed prototype isolation system has been evaluated by experimental works under actual operating conditions.

Studies on a Effective Scheme to Obtain High Temperature Working Plasma for MHD Power Generation (MHD발전용 작동 플라즈마를 고온가열하기 위한 효율적 방안에 관한 연구)

  • 김윤식;노창주;김영길;공영경;최춘성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.153-161
    • /
    • 1993
  • Heat transfer processes in the combustion chamber of a pebble bed regenerative heat exchanger for MHD power generation has been analyzed numerically for heating, evacuation argon heating periods individually. The calculated result well explain the measured temperature change at the top of the pebble bed. The analytical result point out that the length of evacution period and the geometry optimization both for the combustion chamber and the heat storage bed are very important factors for the improvement of thermal performance in MHD power generation.

Practical Swarm Optimization based Fault-Tolerance Algorithm for the Internet of Things

  • Luo, Shiliang;Cheng, Lianglun;Ren, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1178-1191
    • /
    • 2014
  • The fault-tolerance routing problem is one of the most important issues in the application of the Internet of Things, and has been attracting growing research interests. In order to maintain the communication paths from source sensors to the macronodes, we present a hybrid routing scheme and model, in which alternate paths are created once the previous routing is broken. Then, we propose an improved efficient and intelligent fault-tolerance algorithm (IEIFTA) to provide the fast routing recovery and reconstruct the network topology for path failure in the Internet of Things. In the IEIFTA, mutation direction of the particle is determined by multi-swarm evolution equation, and its diversity is improved by the immune mechanism, which can improve the ability of global search and improve the converging rate of the algorithm. The simulation results indicate that the IEIFTA-based fault-tolerance algorithm outperforms the EARQ algorithm and the SPSOA algorithm due to its ability of fast routing recovery mechanism and prolonging the lifetime of the Internet of Things.

Efficient Elitist Genetic Algorithm for Resource-Constrained Project Scheduling

  • Kim, Jin-Lee
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.6
    • /
    • pp.235-245
    • /
    • 2007
  • This research study presents the development and application of an Elitist Genetic Algorithm (Elitist GA) for solving the resource-constrained project scheduling problem, which is one of the most challenging problems in construction engineering. Main features of the developed algorithm are that the elitist roulette selection operator is developed to preserve the best individual solution for the next generation so as to obtain the improved solution, and that parallel schedule generation scheme is used to generate a feasible solution to the problem. The experimental results on standard problem sets indicate that the proposed algorithm not only produces reasonably good solutions to the problems over the heuristic method and other GA, but also can find the optimal and/or near optimal solutions for the large-sized problems with multiple resources within a reasonable amount of time that will be applicable to the construction industry. This paper will help researchers and/or practitioners in the construction project scheduling software area with alternative means to find the optimal schedules by utilizing the advantages of the Elitist GA.

Three-Level Optimal Control of Nonlinear Systems Using Fast Walsh Transform (고속월쉬변환을 이용한 비선형 시스템의 3계층 최적제어)

  • Kim, Tai-Hoon;Shin, Seung-Kwon;Cho, Young-Ho;Lee, Han-Seok;Lee, Jae-Chun;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.11
    • /
    • pp.505-513
    • /
    • 2001
  • This paper presents the new three-level optimal control scheme for the large scale nonlinear systems, which is based on fast walsh transform. It is well known that optimization for nonlinear systems leads to the resolution of a nonlinear two point boundary value problem which always requires a numerical iterative technique for their solution. However, Three-level costate coordination can avoid two point boundary condition in subsystem. But this method also has the defect that must solve high order differential equation in intermediate level. The proposed method makes use of fast walsh transform, therefore, is simple in computation because of solving algebra equation instead of differential equation.

  • PDF