• Title/Summary/Keyword: optimization scheme

Search Result 1,157, Processing Time 0.073 seconds

DUALITY FOR LINEAR CHANCE-CONSTRAINED OPTIMIZATION PROBLEMS

  • Bot, Radu Ioan;Lorenz, Nicole;Wanka, Gert
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.17-28
    • /
    • 2010
  • In this paper we deal with linear chance-constrained optimization problems, a class of problems which naturally arise in practical applications in finance, engineering, transportation and scheduling, where decisions are made in presence of uncertainty. After giving the deterministic equivalent formulation of a linear chance-constrained optimization problem we construct a conjugate dual problem to it. Then we provide for this primal-dual pair weak sufficient conditions which ensure strong duality. In this way we generalize some results recently given in the literature. We also apply the general duality scheme to a portfolio optimization problem, a fact that allows us to derive necessary and sufficient optimality conditions for it.

An Study of Optimization on Vehicle Body Stiffness using CAE Application (CAE를 응용한 차체강성 최적화에 관한 연구)

  • 최명진;송명준;장승호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.129-134
    • /
    • 2001
  • One of the most important purposes in the design of machines and structures is to produce the most light products of the lowest price with satisfying function and performance. In this study, a scheme of design optimization for the weight down of vehicle body structure is presented. Design sensitivity of vehicle body structure is investigated and design optimization is performed to get weight down with the allowable stiffness of body in white. Stress, deformation and natural frequencies are the constraint of the optimization.

  • PDF

Particle Swarm Assisted Genetic Algorithm for the Optimal Design of Flexbeam Sections

  • Dhadwal, Manoj Kumar;Lim, Kyu Baek;Jung, Sung Nam;Kim, Tae Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.341-349
    • /
    • 2013
  • This paper considers the optimum design of flexbeam cross-sections for a full-scale bearingless helicopter rotor, using an efficient hybrid optimization algorithm based on particle swarm optimization, and an improved genetic algorithm, with an effective constraint handling scheme for constrained nonlinear optimization. The basic operators of the genetic algorithm, of crossover and mutation, are revisited, and a new rank-based multi-parent crossover operator is utilized. The rank-based crossover operator simultaneously enhances both the local, and the global exploration. The benchmark results demonstrate remarkable improvements, in terms of efficiency and robustness, as compared to other state-of-the-art algorithms. The developed algorithm is adopted for two baseline flexbeam section designs, and optimum cross-section configurations are obtained with less function evaluations, and less computation time.

Conceptual design of buildings subjected to wind load by using topology optimization

  • Tang, Jiwu;Xie, Yi Min;Felicetti, Peter
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.21-35
    • /
    • 2014
  • The latest developments in topology optimization are integrated with Computational Fluid Dynamics (CFD) for the conceptual design of building structures. The wind load on a building is simulated using CFD, and the structural response of the building is obtained from finite element analysis under the wind load obtained. Multiple wind directions are simulated within a single fluid domain by simply expanding the simulation domain. The bi-directional evolutionary structural optimization (BESO) algorithm with a scheme of material interpolation is extended for an automatic building topology optimization considering multiple wind loading cases. The proposed approach is demonstrated by a series of examples of optimum topology design of perimeter bracing systems of high-rise building structures.

Efficiency Optimization Control for High Performance Operation of Synchronous Reluctance Motor (동기 리럭턴스 전동기의 고성능 운전을 위한 효율 최적화 제어)

  • 정동화;이정철;이홍균
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.51-56
    • /
    • 2001
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor (SynRM) which minimizes the copper and iron losses. fen exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. Simulation results are presented to show the validity of the proposed algorithm.

  • PDF

A smooth boundary scheme-based topology optimization for functionally graded structures with discontinuities

  • Thanh T. Banh;Luu G. Nam;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.73-88
    • /
    • 2023
  • This paper presents a novel implicit level set method for topology optimization of functionally graded (FG) structures with pre-existing discontinuities (pre-cracks) using radial basis functions (RBF). The mathematical formulation of the optimization problem is developed by incorporating RBF-based nodal densities as design variables and minimizing compliance as the objective function. To accurately capture crack-tip behavior, crack-tip enrichment functions are introduced, and an eXtended Finite Element Method (X-FEM) is employed for analyzing the mechanical response of FG structures with strong discontinuities. The enforcement of boundary conditions is achieved using the Hamilton-Jacobi method. The study provides detailed mathematical expressions for topology optimization of systems with defects using FG materials. Numerical examples are presented to demonstrate the efficiency and reliability of the proposed methodology.

Randomized Scheme for Cognizing Tags in RFID Networks and Its Optimization

  • Choi, Cheon Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1674-1692
    • /
    • 2018
  • An RFID network is a network in which a reader inquire about the identities of tags and tags respond with their identities to a reader. The diversity of RFID networks has brought about many applications including an inexpensive system where a single reader supports a small number of tags. Such a system needs a tag cognizance scheme that is able to arbitrate among contending tags as well as is simple enough. In this paper, confining our attention to a clan of simple schemes, we propose a randomized scheme with aiming at enhancing the tag cognizance rate than a conventional scheme. Then, we derive an exact expression for the cognizance rate attained by the randomized scheme. Unfortunately, the exact expression is not so tractable as to optimize the randomized scheme. As an alternative way, we develop an upper bound on the tag cognizance rate. In a closed form, we then obtain a nearly optimal value for a key design parameter, which maximizes the upper bound. Numerical examples confirm that the randomized scheme is able to dominate the conventional scheme in cognizance rate by employing a nearly optimal value. Furthermore, they reveal that the randomized scheme is robust to the fallacy that the reader believes or guesses a wrong number of neighboring tags.

Optimization of Extremely Low Numerical-Dispersion FDTD Method Based on H(2,4) Scheme for Wideband Analysis of Lossy Dielectric (H(2,4) 기법을 기반으로 한 저분산 FDTD 기법의 손실 매질의 광대역 해석을 위한 최적화 방법)

  • Oh, Ilyoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.3
    • /
    • pp.225-232
    • /
    • 2018
  • This paper proposed the optimization method of the extremely low numerical-dispersion finite-difference time-domain (ELND-FDTD) method based on the H(2,4) scheme for wideband and extremely accurate electromagnetic properties of lossy material, which has a constant conductivity and relative permittivity. The optimized values of three variables are calculated for the minimum numerical dispersion errors of the proposed FDTD method. The excellent accuracy of the proposed method is verified by comparing the calculated results of three different FDTD methods and the analytical results of the two-dimensional dielectric cylinder scattering problem.

Stress-Based Springback Reduction of an AHSS Front Side Member (고강도강 프런트 사이드멤버의 응력분포 최적화를 통한 스프링백 저감)

  • Song J.H.;Kim S.H.;Park S.H.;Huh H.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.295-303
    • /
    • 2006
  • Optimization is carried out to determine process parameters which reduce the amount of springback and improve shape accuracy of a deep drawn product in sheet metal forming process. The study uses the amount of stress deviation along the thickness direction in the deep drawn product as an indicator of springback instead of springback simulation. The scheme incorporates with an explicit elasto-plastic finite element method for calculation of the final shape and the stress deviation The optimization method adopts the response surface method in order to seek for the optimum condition of process parameters such as the blank holding force and the draw-bead force. The present scheme is applied to design of the variable blank holding force in an U-draw bending process and the application is further extend ε d to the design of draw-bead force in a front side member formed with advanced high strength steel (AHSS) sheets of DP60. Results show that design of process parameter is well performed to decrease the stress deviation through the thickness and to reduce the amount of springback. The present analysis provides a guideline in a design stage for controlling the springback based on the finite element simulation of the complicated parts.

Stress-Based Springback Reduction of an AHSS Front Side Member (고강도강 프런트 사이드멤버의 음력분포 최적화를 통한 스프링백 저감)

  • Song, J.H.;Kim, S.H.;Huh, H.;Park, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.61-67
    • /
    • 2006
  • Optimization is carried out to determine process parameters which reduce the amount of springback and improve shape accuracy of a deep drawn product in sheet metal forming process. The study uses the amount of stress deviation along the thickness direction in the deep drawn product as an indicator of springback instead of springback simulation. The scheme incorporates with an explicit elasto-plastic finite element method for calculation of the final shape and the stress deviation. The optimization method adopts the response surface method in order to seek for the optimum condition of the draw-bead force. The present scheme is applied to the design of draw-bead force in a front side member formed with advanced high strength steel (AHSS) sheets of DP60. Results show that design of process parameter is well performed to decrease the stress deviation through the thickness and to reduce the amount of springback. The present analysis provides a guideline in a design stage for controlling the springback based on the finite element simulation of the complicated parts.

  • PDF