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DUALITY FOR LINEAR CHANCE-CONSTRAINED
OPTIMIZATION PROBLEMS

Radu Ioan Boţ, Nicole Lorenz, and Gert Wanka

Abstract. In this paper we deal with linear chance-constrained opti-
mization problems, a class of problems which naturally arise in practical
applications in finance, engineering, transportation and scheduling, where
decisions are made in presence of uncertainty. After giving the determin-
istic equivalent formulation of a linear chance-constrained optimization
problem we construct a conjugate dual problem to it. Then we provide
for this primal-dual pair weak sufficient conditions which ensure strong
duality. In this way we generalize some results recently given in the litera-
ture. We also apply the general duality scheme to a portfolio optimization
problem, a fact that allows us to derive necessary and sufficient optimality
conditions for it.

1. Introduction

Stochastic programming is an important topic in the optimization theory
with applications in various fields like financial systems, engineering, location
and transportation problems or the study of physical and chemical systems.
The optimization problems occurring in all these fields usually contain uncer-
tain variables either in the objective functions or in the constraints or even in
both. The interest in optimization under uncertainty was revived in the 1950s
and is still of importance. We refer for an overview on stochastic programming
to [16].

In this paper we work with stochastic programming problems with deter-
ministic objective functions and chance (probabilistic)-constraints, a class of
problems that has been first investigated by Charnes and Cooper in [6, 7, 8].
Other authors which dealt with such problems very early were van de Panne
and Popp in [18] and Kataoka in [12]. The problem we consider in this article
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is

(Pmix) inf f(x),
s.t. P(gi(x) ≤ 0) ≥ 1− αi, i = 1, . . . , m,

hj(x) ≤ 0, j = 1, . . . , k,
x ∈ Rn

where f and hj , j = 1, . . . , k, are convex functions while gi, i = 1, . . . ,m,
are linear functions with random values. These constraints are called single
chance-constraints since individual probabilities ensure that every inequality
holds.

In many papers the use of the theory of chance-constraints in practical appli-
cations is considered and in this setting the case of the single chance-constraints
play an important role. Single chance-constraints may be for instance used
when some constraints are more critical then other ones. Practical applica-
tions using single chance-constraints have been given e.g. for portfolio opti-
mization problems (cf. [4]), but also for problems in production, transport and
operations planning.

The approach considered in this paper assumes giving a deterministic equiv-
alent formulation of the linear single chance-constraints (see [4, 7, 11]). This
transforms (Pmix) into a convex deterministic optimization problem. To this
aim one has to assume that the distribution of the uncertain variables is known.
In this paper we even postulate a normal distribution, but in general also other
distributions can be considered (cf. [1, 5, 9]). It is worth mentioning that in
general the chance-constraints can be assumed to be also nonlinear, even if
in this case the determining of their distribution functions could be a difficult
task.

The paper is organized as follows. In the next section we introduce some
definitions and notations from the convex analysis and employ some results
from the stochastic theory in order to give an equivalent deterministic formula-
tion to (Pmix). In Section 3 we construct a conjugate dual to (Pmix) and give a
strong duality theorem along with a regularity condition which guarantees it.
As a special case of (Pmix) we consider first in Section 4 an optimization prob-
lem with linear objective function and linear (chance)-constraints and provide
a dual problem to it. In this way we rediscover and extend a result recently
given by Scott and Jefferson in [17], which turns out to be a special case of our
considerations. As a practical application to financial mathematics we further
provide the dual of a portfolio optimization problem with chance-constraints
by means of the general duality scheme and derive necessary and sufficient
optimality conditions for it. The last section gives some directions for future
research.



DUALITY FOR LINEAR CHANCE-CONSTRAINED OPTIMIZATION PROBLEMS 19

2. Preliminary notions and results

In this section we introduce some notations we use within the paper along
with some well-known results. Throughout this paper all the vectors are con-
sidered as being column vectors. An upper index T transposes a column vector
into a row one and viceversa. For two arbitrary vectors x, y ∈ Rn the usual in-
ner product in the n-dimensional real space is denoted by xT y. For i = 1, . . . , n
by ei we denote the i-th unit vector in Rn and by e = (1, . . . , 1)T ∈ Rn.

The prefix ri is used for the relative interior of a set, while for the effec-
tive domain of a function f : Rn → R := R ∪ {±∞} we use the notation
dom(f) = {x ∈ Rn : f(x) < +∞}. The function f is said to be proper
if dom(f) 6= ∅ and f(x) > −∞ ∀x ∈ Rn. For f : Rn → R we consider
the conjugate function relative to the nonempty set D ⊆ Rn that is defined
by f∗D(x∗) = supx∈D{xT x∗ − f(x)}. Obviously, for D = Rn, f∗D becomes the
(Fenchel-Moreau) conjugate function of f , which is denoted by f∗. For an opti-
mization problem (P ) we denote by v(P ) its optimal objective value. We write
min (max) instead of inf (sup) if the infimum (supremum) is attained.

Let (Ω, F,P) be a probability space, where Ω is a basic space, F a σ-algebra on
Ω and P a probability measure on the measurable space (Ω, F). Furthermore,
let L2 be the following space of random variables:

L2 := L2(Ω,F,P,R) =
{

x : Ω → R, x measurable,
∫

Ω

x(ω)2dP(ω) < +∞
}

.

By η ∼ N (0, 1) we denote a standard normal distributed random variable.
For z ∈ R it holds P(η ≤ z) = Φ(z) and P(z ≤ η) = 1 − Φ(z), where Φ is the
distribution function of the standard normal distribution. For θ ∼ N (µ, σ2) we
have θ−µ

σ ∼ N (0, 1) and so

P(θ ≤ z) = P
(

θ − µ

σ
≤ z − µ

σ

)
= Φ

(
z − µ

σ

)
.

Let Kα := Φ−1(1 − α) be the (1 − α)-quantile of the standard normal distri-
bution, which is a positive number when α ∈ (0, 0.5].

For x, y two random variables we denote by E(x) the expected value of x, by
D2(x) its variance and by cov(x, y) = E((x − E(x))(y − E(y)) the covariance
between x and y. Let aj ∈ L2, j = 1, . . . , n and b ∈ L2 be normal distributed
random variables. We denote a := (a1, . . . , an) and introduce the notation
E(a) := (E(a1), . . . ,E(an))T for the vector having as components the expected
value of the components of a. For x ∈ Rn let be aT x :=

∑n
j=1 ajxj . The

symmetric positive semidefinite so-called variance-covariance matrix of a will
be denoted by

Σ(a) =




D2(a1) cov(a1, a2) . . . cov(a1, an)
cov(a2, a1) D2(a2) . . . cov(a2, an)

...
. . .

...
cov(an, a1) . . . . . . D2(an)


 .



20 RADU IOAN BOŢ, NICOLE LORENZ, AND GERT WANKA

Next we assume a multinormal distribution aj , j = 1, . . . , k, and b and define
the function g : Rn → L2 by g(x) := aT x − b. For α ∈ (0, 0.5] we con-
sider the following chance-constraint P(g(x) ≤ 0) ≥ 1 − α. Since for x ∈ Rn

g(x) is a linear combination of normal distributed random variables, it has an
(one-dimensional) joint normal distribution with the expected value E(g(x)) =∑n

j=1 E(aj)xj − E(b) = xTE(a)− E(b).
Let be further C(a, b) := (cov(a1, b), . . . , cov(an, b))T ∈ Rn. The n + 1-tuple

(a1, . . . , an, b) of random variables has a normal distribution and a symmetric
positive semidefinite variance-covariance matrix

(1) S(a, b) :=
(

Σ(a) C(a, b)
C(a, b)T D2(b)

)
∈ R(n+1)×(n+1).

Then g(x) has as variance D2(g(x)) := z(x)T S(a, b)z(x) = xT Σx−2C(a, b)T x+
D2(b), where z(x) := (x1, . . . , xn,−1)T ∈ Rn+1, and, consequently, it holds
D2(g(x)) ≥ 0 for all x ∈ Rn. Therefore the standard deviation of g(x) is
D(g(x)) =

√
z(x)T S(a, b)z(x) =

√
xT Σ(a)x− 2CT (a, b)x + D2(b).

As well-known from the literature the constraint P(g(x) ≤ 0) ≥ 1 − α has
as equivalent deterministic formulation g̃(x) := E(g(x)) +D(g(x)) ·Kα ≤ 0. It
also holds P(g(x) ≤ 0) > 1 − α ⇔ E(g(x)) + D(g(x)) ·Kα < 0. As mentioned
above, for α ∈ (0, 0.5] one has Kα > 0. In this situation the function g̃ turns
out to be a convex function (cf. [12, 14, 18]).

Let us mention that one can also consider in this setting distributions in
the chance-constraints that are different from the normal one, like the elliptical
symmetric and the log-concave symmetric distributions (cf. [10, 13]). In this
situations an equivalent deterministic reformulation of the chance-constraints
is possible, too.

On can notice that the function f : Rn → R,

f(x) =
√

xT Σ(a)x− 2C(a, b)T x + D2(b),

with a = (a1, . . . , an), b, Σ(a) and C(a, b) as above, will play an important role
in our investigations. The calculation of its conjugate function is not a trivial
task and employs some knowledge from the convex duality theory. This leads
for all x∗ ∈ Rn to the following formula

f∗(x∗) = min
λ2∈R

{λ2 + s∗(x∗, λ2)},

where by s : Rn → R we denote the function s(x) =
√

xT S(a, b)x for all x ∈ Rn.
For an arbitrary λ ∈ Rn+1 we have that s∗(λ) = 0 if there exists w ∈ Rn+1

such that λ = S(a, b)w and wT S(a, b)w ≤ 1 and s∗(λ) = +∞ otherwise. This
provides the following formula for the conjugate of f for all x∗ ∈ Rn:

f∗(x∗) = min
u∈Rn,v∈R,

x∗=Σ(a)u+C(a,b)v,

uT Σ(a)u+2vC(a,b)T u+v2D2(b)≤1

{C(a, b)T u + D2(b)v}.
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3. Duality for the chance-constrained problem

In this section we develop a duality scheme for the optimization problem
with mixed (chance- and convex) constraints:

(Pmix) inf f(x).
s.t. P(gi(x) ≤ 0) ≥ 1− αi, i = 1, . . . , m,

hj(x) ≤ 0, j = 1, . . . , k,
x ∈ Rn

To this aim we assume that f : Rn → R and hj : Rn → R, j = 1, . . . , k, are
convex functions and that gi : Rn → L2 are defined by gi(x) =

∑n
j=1 aijxj −

bi = aT
i x − bi for i = 1, . . . , m,. Here aij , bi ∈ L2, i = 1, . . . ,m, j = 1, . . . ,m,

are random variables, αi ∈ (0, 0.5] and ai := (ai1, . . . , ain) for i = 1, . . . ,m.
The investigations done in this section concerning (Pmix) extend the ones

recently made by Scott and Jefferson in [17]. As a byproduct, by using the dual-
ity theory, we derive in the following section necessary and sufficient optimality
conditions for the portfolio optimization problem with chance-constraints.

We start by noticing that, keeping the notation from the previous section,
the problem (Pmix) can be equivalently written as:

(Pmix) inf f(x).
s.t. xTE(ai)−E(bi)+

√
xT Σ(ai)x−2C(ai, bi)T x + D2(bi) ·Kαi ≤ 0,

i = 1, . . . , m,
hj(x) ≤ 0, j = 1, . . . , k,
x ∈ Rn

For further calculations we denote for i = 1, . . . , m by fi : Rn → R and g̃i :
Rn → R the functions defined as fi(x) =

√
xT Σ(ai, bi)x−2C(ai, bi)T x + D2(bi)

and g̃i(x) = E(gi(x))+D(gi(x))·Kαi , respectively. Let also be g̃ :=(g̃1, . . . , g̃m)T

and h := (h1, . . . , hk)T . First we construct the Lagrange dual problem to (Pmix).
This has the following formulation

(Dmix) sup
β∈Rm

+ ,γ∈Rk
+

inf
x∈Rn

{f(x) + βT g̃(x) + γT h(x)}

or, equivalently,

(Dmix) sup
β∈Rm

+ ,γ∈Rk
+

{
−


f +

m∑

i=1

βiKαifi +
k∑

j=1

γjhj



∗(

−
m∑

i=1

βiE(ai)

)
−

m∑

i=1

βiE(bi)
}
.

For the conjugates of fi, i = 1, . . . , k, one can use now the formula given in
the previous section. On the other hand, the conjugate of the sum of convex
functions can be written in this setting as being equal to the infimal convolu-
tion of the conjugates of the summands (cf. [15]). Consequently, after some
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calculations and transformations we obtain the following dual problem:

(Dmix) sup
βi∈R+,ui∈Rn,vi∈R,

uT
i Σ(ai)ui+2viC(ai,bi)

T ui

+v2
i D2(bi)≤1,i=1,...,m,

γj∈R+,qj∈Rn,j=1,...,k

8
<
:−f∗

„
−

mX

i=1

βi[E(ai) + Kαi (Σ(ai)ui + C(ai, bi)vi)]−
kX

j=1

γjqj

«

−
mX

i=1

βiE(bi)−
mX

i=1

βiKαi [C(ai, bi)
T ui + D2(bi)vi]−

kX

j=1

γjh∗j (qj)

9
=
;.

For having strong duality for the primal-dual pair (Pmix)−(Dmix) one needs
to have a constraint qualification fulfilled. In our situation it is enough to
demand that (see [15])

(CQmix) ∃x′ ∈ ri(dom(f)) :





g̃i(x′) < 0, i = 1, . . . , m,
hj(x′) ≤ 0, j ∈ L,
hj(x′) < 0, j ∈ N

is fulfilled, where L = {j ∈ {1, . . . , k} : hj is affine} and N = {1, . . . , k} \ L. It
is easy to see that this constraint qualification can be equivalently written as

(CQmix) ∃x′ ∈ ri(dom(f)) :




P(gi(x′) ≤ 0) > 1− αi, i = 1, . . . ,m,
hj(x′) ≤ 0, j ∈ L,
hj(x′) < 0, j ∈ N.

Now we can state the so-called strong duality theorem.

Theorem 3.1 (strong duality for (Pmix)−(Dmix)). Let us assume that (CQmix)
is fulfilled. Then it holds v(Pmix) = v(Dmix) and the dual (Dmix) has an optimal
solution.

4. Particular cases

Within this section we show first how a recent result due to Scott and Jef-
ferson follows as a particular case of our general duality scheme, while in the
second part we derive necessary and sufficient optimality conditions for a port-
folio optimization problem with linear chance-constraints.

4.1. The linear case

Consider the optimization problem

(Plin) inf aT x,

s.t. P

(
n∑

j=1

aijxj ≤ bi

)
≥ 1− αi, i = 1, . . . , m,

x = 0

where a ∈ Rn and aij , bi ∈ L2, i = 1, . . . , m, j = 1, . . . , m are random variables,
αi ∈ (0, 0.5] and ai := (ai1, . . . , ain) for i = 1, . . . ,m.
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A dual problem to (Plin) will be constructed by applying the general theory
in Section 3, namely by particularizing (Dmix). This will have the following
formulation

(Dlin) sup
βi∈R+,ui∈Rn,vi∈R,

uT
i Σ(ai)ui+2viC(ai,bi)

T ui+v2
iD2(bi)≤1,

i=1,...,m,

−
mP

i=1
βi[E(ai)+Kαi

(Σ(ai)ui+C(ai,bi)vi)]

−
nP

j=1
γjqj=a,γj∈R+,qj=−ej ,j=1,...,n

{
−

m∑
i=1

βi[µi
b + Kαi(C(ai, bi)T ui + D2(bi)vi)]

}

or, equivalently,

(Dlin) sup
βi∈R+,ui∈Rn,vi∈R,

uT
i Σ(ai)ui+2viC(ai,bi)

T ui

+v2
iD2(bi)≤1,i=1,...,m,

a+
mP

i=1
βi[E(ai)+Kαi

(Σ(ai)ui+C(ai,bi)vi)]≥0

{
−

m∑
i=1

βi[E(bi) + Kαi(C(ai, bi)T ui + D2(bi)vi)]
}
.

A particular instance of (Plin) was recently treated by Scott and Jefferson in
[17] by means of geometric programming duality. The primal problem in the
probabilistic formulation is given in the form of (Plin) while the deterministic
equivalent formulation of it is

(Plin,SJ) inf aT x.

s.t. xTE(ai)− bi + Kαi

√
xT Σ(ai)x ≤ 0, i = 1, . . . , k,

xT ai − E(bi) + KαiD(bi) ≤ 0, i = k + 1, . . . , m,
x = 0

In [17] the authors actually suppose that for 1 < k < m, aij , j = 1, . . . , n, are
normal distributed for i = 1, . . . , k and deterministic for i = k+1, . . . , m, while
bi are normal distributed for i = k+1, . . . ,m and deterministic for i = 1, . . . , k.
Further, Σ(ai) are assumed to be positive definite for i = 1, . . . , k . This implies
that




D2(bi) = 0 and E(bi) = bi, ∀i ≤ k,
Σ(ai) = 0 and E(ai) = ai, ∀i ≥ k + 1,
C(ai, bi) = 0, ∀i = 1, . . . ,m.

(2)

The dual (Dlin) provides under the usage of (2) the following dual problem
to (Plin,SJ)

(Dlin,SJ) sup
βi∈R+,ui∈Rn,uT

i Σ(ai)ui≤1,

i=1,...,k,vi∈R,v2
iD2(bi)≤1,i=k+1,...,m,

a+
kP

i=1
βi[E(ai)+Kαi

Σ(ai)ui]+
mP

i=k+1
βiai≥0

{
−

k∑
i=1

βibi −
m∑

i=k+1

βi[E(bi) + KαiD2(bi)vi]
}
.
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Some further treatments (in particular introducing the new variables pi :=
−βiKαi

Σiui for i = 1, . . . , k) yield the following formulation of the dual prob-
lem to (Plin,SJ)

(Dlin,SJ) sup
βi∈R+,pi∈Rn,

√
pT

i Σ(ai)−1pi≤βiKαi
,

i=1,...,k,a+
kP

i=1
βiE(ai)−

kP
i=1

pi+
mP

i=k+1
βiai≥0

{
−

k∑
i=1

βibi −
m∑

i=k+1

βi[E(bi)−Kαi
D(bi)]

}
.

The constraint qualification given in Section 3 becomes in this special case:

(CQlin,SJ) ∃x′ ∈ Rn
+ :

{
P(aT

i x′ − bi ≤ 0) > 1− αi, i = 1, . . . , k,
P(aT

i x′ − bi ≤ 0) ≥ 1− αi, i = k + 1, . . . ,m.

Theorem 4.1 (strong duality (Plin,SJ)− (Dlin,SJ)). Let us assume that (CQlin,SJ)
is fulfilled. Then it holds v(Plin,SJ) = v(Dlin,SJ) and (Dlin,SJ) has an optimal
solution.

Remark 4.1. With the exception of a sign in the objective function, Scott
and Jefferson give in [17] for (Plin,SJ) the same dual optimization problem as
(Dlin,SJ). Nevertheless, in that paper the problem of giving sufficient regularity
conditions or of stating a strong duality theorem is not addressed.

4.2. Application to portfolio optimization theory

In this part we consider a portfolio optimization problem for which we derive
necessary and sufficient optimality conditions as an application of the gen-
eral duality scheme developed in Section 3. We assume that n + 1 assets
are given, where the first one is riskless with the riskless return r0 = E(r0).
The return of asset j is given by the random variable rj ∈ L2 with an ex-
pected return of E(rj) for j = 1, . . . , n. We denote by E(r) the vector E(r) :=
(E(r0),E(r1), . . . ,E(rn))T . Further let Σ(r) ∈ R(n+1)×(n+1) be the symmetric
positive semidefinite variance-covariance matrix of r := (r0, r1, . . . , rn)T . The
classical portfolio optimization problem has the following formulation

(Ppo) inf f(x).

s.t. x0E(r0) +
n∑

j=1

xjE(rj) ≥ b,

n∑
j=0

xj = 1,

x = (x0, x1, . . . , xn)T = 0

where x = (x0, x1, . . . , xn)T is the vector having as components the proportions
of the assets in the whole portfolio, f : Rn → R is a function measuring the
risk of the portfolio (e.g. the variance or any deviation or risk measure).
Here b ∈ R is a return benchmark and in our approach should be assumed
to be a constant random variable in L2. Let g : Rn+1 → L2 be defined by
g(x) = b−∑n

j=0 xjrj = b−xT r. We have E(g(x)) = b−xTE(r) and D2(g(x)) =
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xT Σ(r)x for all x ∈ Rn+1. When applying the previous model to this particular
situations one has to take C(r, b) = 0 and D(b) = 0.

Remark 4.2. As proved in the previous section, one can construct a dual prob-
lem and also provide necessary and sufficient optimality conditions even if it
considers that b is a random variable in L2. This is of importance if our target
is to construct a portfolio that hits or at least reaches any benchmark port-
folio or market index (e.g. the DAX (Deutscher Aktienindex)) with a certain
probability. Therefore one can consider b =

∑n
j=1 yjrj with given and fixed

proportions yj ∈ (0, 1), j = 1, . . . , n, and random returns rj , j = 1, . . . , n, as
above.

The following portfolio optimization problem with mixed (linear and chance-)
constraints was treated in [4]

(Ppomix) inf f(x),

s.t. P

(
x0r0 +

n∑
j=1

xjrj ≥ b

)
≥ 1− α,

n∑
j=0

xj = 1,

x = (x0, x1, . . . , xn)T = 0

where for f the variance of the portfolio return was considered. Here we let
f being the standard deviation f(x) =

√
xT Σ(r)x, x ∈ Rn+1. Its equivalent

deterministic formulation is

(Ppomix) inf f(x),
s.t. b− xTE(r) + Kα

√
xT Σ(r)x ≤ 0,

n∑
j=0

xj = 1,

x = (x0, x1, . . . , xn)T = 0

By means of the general considerations made in Section 3 we obtain the
following dual problem to (Ppomix)

(Dpomix) sup
β∈R+,u,w∈Rn+1,uT Σ(r)u≤1,wT Σ(r)w≤1,

γj∈R+,j=0,...,n+2,

−β(−E(r)+KαΣ(r)u)+
nP

j=0
γjej+e(−γn+1+γn+2)=Σ(r)w

{
βb− γn+1 + γn+2

}
.

Further we define κ := (γ0, . . . , γn)T ∈ Rn+1
+ and c := γn+1−γn+2 ∈ R and get

(Dpomix) sup
β∈R+,κ∈Rn+1

+ ,u,w∈Rn+1,c∈R,

uT Σ(r)u≤1, wT Σ(r)w≤1,
c=[κ−β(−µ+KαΣ(r)u)−Σ(r)w]j , ∀j=0,...,n

{
βb− c

}
.
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The following constraint qualification

(CQpomix) ∃x′ ∈ Rn+1
+ :

{
P(b−∑n

j=0 x′jrj ≤ 0) > 1− α,∑n
j=0 x′j = 1

ensures for the primal-dual pair (Ppomix) − (Dpomix) the existence of strong
duality.

Theorem 4.2 (strong duality for (Ppomix) − (Dpomix)). Let us assume that
(CQpomix) is fulfilled. Then it holds v(Ppomix) = v(Dpomix) and (Dpomix) has
an optimal solution.

The previous theorem is an important tool for deriving necessary and suffi-
cient optimality conditions for the primal-dual pair (Ppomix)-(Dpomix).

Theorem 4.3. (a) Let x be an optimal solution of (Ppomix) and assume that
(CQpomix) is fulfilled. Then there exist β ≥ 0, κ = (κ0, . . . , κn)T , κi ≥ 0, i =
0, . . . , n, u, w ∈ Rn+1 with uT Σ(r)u ≤ 1, wT Σ(r)w ≤ 1 and c ∈ R with
c =

[
κ− β(−E(r) + KαΣ(r)u)−Σ(r)w

]
j
, j = 0, . . . , n, such that the following

optimality conditions are fulfilled:

(i)
√

xT Σ(r)x
[
1−

√
wT Σ(r)w

]
= 0,

(ii)
√

xT Σ(r)x
√

wT Σ(r)w − xT Σ(r)w = 0,

(iii) β[b− xTE(r) + Kα

√
xT Σ(r)x] = 0,

(iv) xjκj = 0, j = 0, . . . , n,

(v) β
√

xT Σ(r)x(1−
√

uT Σ(r)u) = 0,

(vi) β[
√

xT Σ(r)x
√

uT Σ(r)u− xT Σ(r)u] = 0.

(b) If x is feasible to (Ppomix) and (β, κ, u, w, c) is feasible to (Dpomix) fulfilling
the optimality conditions (i)-(vi), then x is an optimal solution of (Ppomix) and
(β, κ, u, w, c) is an optimal solution of (Dpomix) and v(Ppomix) = v(Dpomix).

Proof. (a) Since x is an optimal solution to (Ppomix), by Theorem 4.2 there
exists (β, κ, u, w, c), an optimal solution to (Dpomix), such that v(Ppomix) =

v(Dpomix) or, equivalently,
√

xT Σ(r)x − βb + c = 0. But this is nothing else
than[√

xT Σ(r)x−
√

xT Σ(r)x
√

wT Σ(r)w
]

+
[√

xT Σ(r)x
√

wT Σ(r)w − xT Σ(r)w
]

+
[
xT κ

]

+
[
−β(b− xTE(r) + Kα

√
xT Σ(r)x)

]
+

[
βKα(

√
xT Σ(r)x

√
uT Σ(r)u− xT Σ(r)u)

]

+
[
βKα(

√
xT Σ(r)x−

√
xT Σ(r)x

√
uT Σ(r)u)

]
= 0.

All the terms inside the brackets are nonnegative and thus all of them have to
be equal to zero and the conclusion follows.
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(b) The calculations done within part (a) can be carried out in reverse
direction and therefore the proof is complete. ¤

Remark 4.3. When Σ(r) is a symmetric and positive definite matrix the con-
ditions (i)-(vi) in the previous theorem can be written as follows (since one has
xT Σ(r)x > 0):

(i) wT Σ(r)w = 1, (ii)
√

xT Σ(r)x− xT Σ(r)w = 0,

(iii) β[b− xTE(r) + Kα

√
xT Σ(r)x] = 0, (iv) xjκj = 0, j = 0, . . . , n,

(v) β(1−
√

uT Σ(r)u) = 0, (vi) β[
√

xT Σ(r)x− xT Σ(r)u] = 0.

Remark 4.4. One can consider in the objective function of (Ppomix) also other
convex risk or deviation measures, find a dual to it and derive necessary and
sufficient optimality conditions. To this end one needs to find the conjugate of
the objective function. In [3], by using the conjugate duality, we have provided
formulae for the conjugate functions of different risk and deviation measures
used in the literature on mathematics of finance and the theory of risk.

5. Future research

In this section we discuss some directions for future research in duality for
optimization problems with chance constraints. First, we want to mention
again that it is possible to consider in the chance-constraints also other distri-
butions than the normal one, such as the elliptical symmetric and log-concave
symmetric distribution (see [10, 13]). As one can see in [10] it is possible to
get explicit deterministic equivalent formulations for the optimization problems
even if for the random variables these distributions are supposed. On could try
to provide a duality scheme for problems with chance constraints of the type
P(g(x) ≤ 0) ≥ 1 − α, where g is linear, but also nonlinear, under the usage of
one of the mentioned distributions.

In this paper we deal with the case of α ∈ (0, 0.5] which causes Kα > 0 and
hence we get that g̃(x) = E(g(x))+D(g(x)) ·Kα, x ∈ Rn, is a convex function.
The case where Kα < 0 leads to a function g̃ which is the difference of two
convex functions E(g(·)) and D(g(·)). Therefore one could try to use techniques
coming from dc programming techniques (cf. [2]) in order to deal with duality
in this case.
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