• 제목/요약/키워드: optimization procedure

검색결과 1,157건 처리시간 0.031초

인두기능의 3차원적 생체역학 모델에 관한 연구 (A study on the three-dimensional biomechanical model of the human pharyngeal function)

  • 김성민;김남현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1852-1855
    • /
    • 1997
  • A three-dimensional biomechanical modle is proposed in order to simulate human pharyngeal function based on the FEM(Finite Element Method) utilizing optimization procedure.

  • PDF

달착륙 임무를 위한 최적화 기반 아폴로 유도 법칙 파라미터 선정 (Optimization-Based Determination of Apollo Guidance Law Parameters for Korean Lunar Lander)

  • 조병운;안재명
    • 한국항공우주학회지
    • /
    • 제45권8호
    • /
    • pp.662-670
    • /
    • 2017
  • 본 논문에서는 한국형 달 착륙 임무를 위한 아폴로 유도 법칙의 파라미터 선정을 위한 최적화 기반의 절차를 제안하였다. 달 착륙 문제를 연료 소모량을 최소화하기 위한 궤적 최적화 문제로 공식화하였으며 비행 이전 단계에서 본 문제를 풀어 착륙선의 기준 궤적을 획득할 수 있다. 아폴로 유도의 파라미터들은 유도 명령을 정의하기 위해 사용되는 다항식의 계수들이며, 비행 이전 단계에서 구해진 기준 궤적을 기반으로 선정된다. 제안된 절차의 효과를 입증하기 위해, 본 절차를 사용한 한국형 달 착륙 임무의 착륙 유도 사례연구를 수행하였다.

Topology and geometry optimization of different types of domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Advances in Computational Design
    • /
    • 제1권1호
    • /
    • pp.1-25
    • /
    • 2016
  • Domes are architectural and elegant structures which cover a vast area with no interrupting columns in the middle, and with suitable shapes can be also economical. Domes are built in a wide variety of forms and specialized terms are available to describe them. According to their form, domes are given special names such as network, lamella, Schwedler, ribbed, and geodesic domes. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The network, lamella, ribbed and Schwedler domes are studied to determine the optimum number of rings, the optimum height of crown and tubular sections of these domes. The minimum volume of each dome is taken as the objective function. A simple procedure is defined to determine the dome structures configurations. This procedure includes calculating the joint coordinates and element constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). The wind loading act on domes according to ASCE 7-05 (American Society of Civil Engineers). This paper will explore the efficiency of various type of domes and compare them at the first stage to investigate the performance of these domes under different kind of loading. At the second stage the wind load on optimum design of domes are investigated for Schwedler dome. Optimization process is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for domes.

Damage-based optimization of large-scale steel structures

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1119-1139
    • /
    • 2014
  • A damage-based seismic design procedure for steel frame structures is formulated as an optimization problem, in which minimization of the initial construction cost is treated as the objective of the problem. The performance constraint of the design procedure is to achieve "repairable" damage state for earthquake demands that are less severe than the design ground motions. The Park-Ang damage index is selected as the seismic damage measure for the quantification of structural damage. The charged system search (CSS) algorithm is employed as the optimization algorithm to search the optimum solutions. To improve the time efficiency of the solution algorithm, two simplifying strategies are adopted: first, SDOF idealization of multi-story building structures capable of estimating the actual seismic response in a very short time; second, fitness approximation decreasing the number of fitness function evaluations. The results from a numerical application of the proposed framework for designing a twelve-story 3D steel frame structure demonstrate its efficiency in solving the present optimization problem.

Life-cycle-cost optimization for the wind load design of tall buildings equipped with TMDs

  • Venanzi, Ilaria;Ierimonti, Laura;Caracoglia, Luca
    • Wind and Structures
    • /
    • 제30권4호
    • /
    • pp.379-392
    • /
    • 2020
  • The paper presents a Life-Cycle Cost-based optimization framework for wind-excited tall buildings equipped with Tuned Mass Dampers (TMDs). The objective is to minimize the Life-Cycle Cost that comprises initial costs of the structure, the control system and costs related to repair, maintenance and downtime over the building's lifetime. The integrated optimization of structural sections and mass ratio of the TMDs is carried out, leading to a set of Pareto optimal solutions. The main advantage of the proposed methodology is that, differently from the traditional optimal design approach, it allows to perform the unified design of both the structure and the control system in a Life Cycle Cost Analysis framework. The procedure quantifies wind-induced losses, related to structural and nonstructural damage, considering the stochastic nature of the loads (wind velocity and direction), the specificity of the structural modeling (e.g., non-shear-type vibration modes and torsional effects) and the presence of the TMDs. Both serviceability and ultimate limit states related to the structure and the TMDs' damage are adopted for the computation of repair costs. The application to a case study tall building allows to demonstrate the efficiency of the procedure for the integrated design of the structure and the control system.

Optimization of filling process in RTM using genetic algorithm

  • Kim, Byoung-Yoon;Nam, Gi-Joon;Ryu, Ho-Sok;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제12권1호
    • /
    • pp.83-92
    • /
    • 2000
  • In resin transfer molding (RTM) process, preplaced fiber mat is set up in a mold and thermoset resin is injected into the mold. An important interest in RTM process is to minimize cycle time without sacrificing part quality or increasing cost. In this study, the numerical simulation and optimization process in filling stage were conducted in order to determine the optimum gate locations. Control volume finite element method (CVFEM) was used in this numerical analysis with the coordinate transformation method to analyze the complex 3-dimensional structure. Experiments were performed to monitor the flow front to validate simulation results. The results of numerical simulation predicted well the experimental results with every single, simultaneous and sequential injection procedure. We performed the optimization analysis for the sequential injection procedure to minimize fill time. The complex geometry of an automobile bumper core was chosen. Genetic algorithm was used in order to determine the optimum gate locations with regard to 3-step sequential injection case. These results could provide the information of the optimum gate locations in each injection step and could predict fill time and flow front.

  • PDF

진화 구조 최적화 기법을 이용한 개구부의 형상 최적화에 관한 연구 (A Study on the Shape Optimization of a Cutout Using Evolutionary Structural Optimization Method)

  • 류충현;이영신
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.369-372
    • /
    • 2000
  • ESO(Evolutionary Structural Optimization) method is known that elements involved low stress value are removed from the previous model or that elements are added around elements involved high stress level on it and then the optimized model is obtained with required weight. Rejection ratio/addition ratio and evolutionary ratio are predefined and elements having lower/higher stress than reference stress, which average Mises stress on edge elements times rejection ratio, are deleted/added. In this study, when the plate having a cutout is subjected various in-plane load, a cutout shape is optimized using ESO method. ANSYS is used to analyse a finite element model and optimization procedure is made by APDL (ANSYS Parametric Design Language). ESO method is useful in rather than a complex structure optimization as well as a cutout shape optimization.

  • PDF

An investigation of non-linear optimization methods on composite structures under vibration and buckling loads

  • Akbulut, Mustafa;Sarac, Abdulhamit;Ertas, Ahmet H.
    • Advances in Computational Design
    • /
    • 제5권3호
    • /
    • pp.209-231
    • /
    • 2020
  • In order to evaluate the performance of three heuristic optimization algorithms, namely, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO) for optimal stacking sequence of laminated composite plates with respect to critical buckling load and non-dimensional natural frequencies, a multi-objective optimization procedure is developed using the weighted summation method. Classical lamination theory and first order shear deformation theory are employed for critical buckling load and natural frequency computations respectively. The analytical critical buckling load and finite element calculation schemes for natural frequencies are validated through the results obtained from literature. The comparative study takes into consideration solution and computational time parameters of the three algorithms in the statistical evaluation scheme. The results indicate that particle swarm optimization (PSO) considerably outperforms the remaining two methods for the special problem considered in the study.

마이크로 밀링 머신의 저진동.경량화를 위한 구조 최적설계 (Structural Design Optimization of a Micro Milling Machine for Minimum Weight and Vibrations)

  • 장성현;권봉철;최영휴;박종권
    • 한국공작기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.103-109
    • /
    • 2009
  • This paper presents structural design optimization of a micro milling machine for minimum weight and compliance using a genetic algorithm with dynamic penalty function. The optimization procedure consists of two design stages, which are the static and dynamic design optimization stages. The design problem, in this study, is to find out thickness of structural members which minimize the weight, the static compliance and the dynamic compliance of the micro milling machine under several constraints such as dimensional constraints, maximum compliance limit, and safety factor criterion. Optimization results showed a great reduction in the static and dynamic compliances at the spindle nose of the micro milling machine in spite of a little decrease in the machine weight.

Surrogate Modeling for Optimization of a Centrifugal Compressor Impeller

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권1호
    • /
    • pp.29-38
    • /
    • 2010
  • This paper presents a procedure for the design optimization of a centrifugal compressor. The centrifugal compressor consists of a centrifugal impeller, vaneless diffuser and volute. And, optimization techniques based on the radial basis neural network method are used to optimize the impeller of a centrifugal compressor. The Latin-hypercube sampling of design-of-experiments is used to generate the thirty design points within design spaces. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by using finite volume approximations and solved on hexahedral grids to evaluate the objective function of the total-to-total pressure ratio. Four variables defining the impeller hub and shroud contours are selected as design variables in this optimization. The results of optimization show that the total-to-total pressure ratio of the optimized shape at the design flow coefficient is enhanced by 2.46% and the total-to-total pressure ratios at the off-design points are also improved significantly by the design optimization.