• Title/Summary/Keyword: optimization problem

Search Result 4,342, Processing Time 0.028 seconds

An Ant Colony Optimization Heuristic to solve the VRP with Time Window (차량 경로 스케줄링 문제 해결을 위한 개미 군집 최적화 휴리스틱)

  • Hong, Myung-Duk;Yu, Young-Hoon;Jo, Geun-Sik
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.389-398
    • /
    • 2010
  • The Vehicle Routing and Scheduling Problem with Time Windows(VRSPTW) is to establish a delivery route of minimum cost satisfying the time constraints and capacity demands of many customers. The VRSPTW takes a long time to generate a solution because this is a NP-hard problem. To generate the nearest optimal solution within a reasonable time, we propose the heuristic by using an ACO(Ant Colony Optimization) with multi-cost functions. The multi-cost functions can generate a feasible initial-route by applying various weight values, such as distance, demand, angle and time window, to the cost factors when each ant evaluates the cost to move to the next customer node. Our experimental results show that our heuristic can generate the nearest optimal solution more efficiently than Solomon I1 heuristic or Hybrid heuristic applied by the opportunity time.

A Study of A Design Optimization Problem with Many Design Variables Using Genetic Algorithm (유전자 알고리듬을 이용할 대량의 설계변수를 가지는 문제의 최적화에 관한 연구)

  • 이원창;성활경
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.117-126
    • /
    • 2003
  • GA(genetic algorithm) has a powerful searching ability and is comparatively easy to use and to apply as well. By that reason, GA is in the spotlight these days as an optimization skill for mechanical systems.$^1$However, GA has a low efficiency caused by a huge amount of repetitive computation and an inefficiency that GA meanders near the optimum. It also can be shown a phenomenon such as genetic drifting which converges to a wrong solution.$^{8}$ These defects are the reasons why GA is not widdy applied to real world problems. However, the low efficiency problem and the meandering problem of GA can be overcomed by introducing parallel computation$^{7}$ and gray code$^4$, respectively. Standard GA(SGA)$^{9}$ works fine on small to medium scale problems. However, SGA done not work well for large-scale problems. Large-scale problems with more than 500-bit of sere's have never been tested and published in papers. In the result of using the SGA, the powerful searching ability of SGA doesn't have no effect on optimizing the problem that has 96 design valuables and 1536 bits of gene's length. So it converges to a solution which is not considered as a global optimum. Therefore, this study proposes ExpGA(experience GA) which is a new genetic algorithm made by applying a new probability parameter called by the experience value. Furthermore, this study finds the solution throughout the whole field searching, with applying ExpGA which is a optimization technique for the structure having genetic drifting by the standard GA and not making a optimization close to the best fitted value. In addition to them, this study also makes a research about the possibility of GA as a optimization technique of large-scale design variable problems.

Modified Particle Swarm Optimization with Time Varying Acceleration Coefficients for Economic Load Dispatch with Generator Constraints

  • Abdullah, M.N.;Bakar, A.H.A;Rahim, N.A.;Mokhlis, H.;Illias, H.A.;Jamian, J.J.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.15-26
    • /
    • 2014
  • This paper proposes a Modified Particle Swarm Optimization with Time Varying Acceleration Coefficients (MPSO-TVAC) for solving economic load dispatch (ELD) problem. Due to prohibited operating zones (POZ) and ramp rate limits of the practical generators, the ELD problems become nonlinear and nonconvex optimization problem. Furthermore, the ELD problem may be more complicated if transmission losses are considered. Particle swarm optimization (PSO) is one of the famous heuristic methods for solving nonconvex problems. However, this method may suffer to trap at local minima especially for multimodal problem. To improve the solution quality and robustness of PSO algorithm, a new best neighbour particle called 'rbest' is proposed. The rbest provides extra information for each particle that is randomly selected from other best particles in order to diversify the movement of particle and avoid premature convergence. The effectiveness of MPSO-TVAC algorithm is tested on different power systems with POZ, ramp-rate limits and transmission loss constraints. To validate the performances of the proposed algorithm, comparative studies have been carried out in terms of convergence characteristic, solution quality, computation time and robustness. Simulation results found that the proposed MPSO-TVAC algorithm has good solution quality and more robust than other methods reported in previous work.

A multi-level approach for the optimization of an ultrafiltration plant processing surface water

  • Zondervan, E.;Roffel, B.
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.61-74
    • /
    • 2010
  • This paper will integrate models at different levels (from filtration, backwashing to chemical cleaning and membrane lifetime) that can be used to minimize overall operating costs of a dead-end ultra filtration process that is used for the purification of surface water. Integration of the models leads to a multi-level optimization problem (at different levels different objectives should be reached). This problem is solved as a MINLP. Systematic modelling and optimization of membrane systems is not extensively discussed in the scientific literature. In this paper the first steps are taken in the formulation of proper models and the use of systems engineering tools to come to real optimal operating conditions. The optimized variables are used to calculate fouling profiles which can subsequently be used as inputs for a control system that actually enforces the profiles to a real pilot plant.

Damage assessment of beams from changes in natural frequencies using ant colony optimization

  • Majumdar, Aditi;De, Ambar;Maity, Damodar;Maiti, Dipak Kumar
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.391-410
    • /
    • 2013
  • A numerical method is presented here to detect and assess structural damages from changes in natural frequencies using Ant Colony Optimization (ACO) algorithm. It is possible to formulate the inverse problem in terms of optimization and then to utilize a solution technique employing ACO to assess the damage/damages of structures using natural frequencies. The laboratory tested data has been used to verify the proposed algorithm. The study indicates the potentiality of the developed code to solve a wide range of inverse identification problems in a systematic manner. The developed code is used to assess damages of beam like structures using a first few natural frequencies. The outcomes of the simulated results show that the developed method can detect and estimate the amount of damages with satisfactory precision.

A 3-D Wing Aerodynamic Design Optimization Considering Uncertainty Effects (불확실성 요소들을 고려한 3차원 날개의 공력 최적설계)

  • Ahn Joongki;Kim Suhwan;Kwon Jang Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.9-16
    • /
    • 2004
  • This study presents results of aerodynamic wing optimization under uncertainties. To consider uncertainties, an alternative strategy for reliability-based design optimization(RBDO) is developed. The strategy utilizes a single loop algorithm and a sequential approximation optimization(SAO) technique. The SAO strategy relies on the trust region-SQP framework which validates approximated functions at every iteration. Further improvement in computational efficiency is achieved by applying the same sensitivity of limit state functions in the reliability analysis and in the equivalent deterministic constraint calculation. The framework is examined by solving an analytical test problem to show that the proposed framework has the computational efficiency over existing methods. The proposed strategy enables exploiting the RBDO technique in aerodynamic design. For the aerodynamic wing design problem, the solution converges to the reliable point satisfying the probabilistic constraints.

  • PDF

The application of operations research to airline schedule planning (항공 일정계획에 경영과학의 활용)

  • Kim, Jun-Hyeok;Kim, Yeo-Geun;Lee, Han-Beom
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2007.11a
    • /
    • pp.27-37
    • /
    • 2007
  • Many problems related to airline business belong to large-scale optimization problems, so that it is expected that the state-of-art optimization techniques are widely applied to making the airline operation effective and competitive. This paper introduces the concepts and mathematical models of various optimization problems in airline system. Airlines involve many activities that utilize airline resources such as aircrafts and crews to make profit. We view the airline activities in the planning and operational aspects. In the planning viewpoint, we discuss the flight schedule design problem that impacts on passenger demand directly. For aircraft and crews, we deal with fleet assignment, aircraft routing, crew pairing optimization, and crew assignment problem. In the operational viewpoint, we concern schedule recovery problems for aircrafts and crew using the method of reassigning available resources when airlines face with the unexpected situations.

  • PDF

An Evolutionary Optimization Approach for Optimal Hopping of Humanoid Robots

  • Hong, Young-Dae
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2420-2426
    • /
    • 2015
  • This paper proposes an evolutionary optimization approach for optimal hopping of humanoid robots. In the proposed approach, the hopping trajectory is generated by a central pattern generator (CPG). The CPG is one of the biologically inspired approaches, and it generates rhythmic signals by using neural oscillators. During the hopping motion, the disturbance caused by the ground reaction forces is compensated for by utilizing the sensory feedback in the CPG. Posture control is essential for a stable hopping motion. A posture controller is utilized to maintain the balance of the humanoid robot while hopping. In addition, a compliance controller using a virtual spring-damper model is applied for stable landing. For optimal hopping, the optimization of the hopping motion is formulated as a minimization problem with equality constraints. To solve this problem, two-phase evolutionary programming is employed. The proposed approach is verified through computer simulations using a simulated model of the small-sized humanoid robot platform DARwIn-OP.

Multi Case Non-Convex Economic Dispatch Problem Solving by Implementation of Multi-Operator Imperialist Competitive Algorithm

  • Eghbalpour, Hamid;Nabatirad, Mohammadreza
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1417-1426
    • /
    • 2017
  • Power system analysis, Non-Convex Economic Dispatch (NED) is considered as an open and demanding optimization problem. Despite the fact that realistic ED problems have non-convex cost functions with equality and inequality constraints, conventional search methods have not been able to effectively find the global answers. Considering the great potential of meta-heuristic optimization techniques, many researchers have started applying these techniques in order to solve NED problems. In this paper, a new and efficient approach is proposed based on imperialist competitive algorithm (ICA). The proposed algorithm which is named multi-operator ICA (MuICA) merges three operators with the original ICA in order to simultaneously avoid the premature convergence and achieve the global optimum answer. In this study, the proposed algorithm has been applied to different test systems and the results have been compared with other optimization methods, tending to study the performance of the MuICA. Simulation results are the confirmation of superior performance of MuICA in solving NED problems.

An Optimization Model for Resolving Circular Shareholdings of Korean Large Business Groups (대규모 기업집단의 순환출자 해소를 위한 최적화 모형)

  • Park, Chan-Kyoo;Kim, Dae-Lyong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.4
    • /
    • pp.73-89
    • /
    • 2009
  • Circular shareholdings among three companies are formed when company A owns stock in company B, company B owns stock in company C, and company C owns stock in company A. Since circular shareholdings among large family-controlled firms are used to give the controlling shareholder greater control or more opportunities to expropriate minority investors, the government has encouraged large business groups to gradually remove their circular shareholdings. In this paper, we propose a combinatorial optimization model that can answer the question, which equity investments among complicated investment relationships of one large business group should be removed to resolve its circular shareholdings. To the best knowledge of the authors, our research is the first one that has approached the circular shareholding problem in respect of management science. The proposed combinatorial optimization model are formulated into integer programming problem and applied to some Korean major business groups.