• Title/Summary/Keyword: optimization of production

Search Result 1,632, Processing Time 0.036 seconds

Production of Alkaline Protease by Entrapped Bacillus licheniformis Cells in Repeated Batch Process

  • Mashhadi-Karim, Mohammad;Azin, Mehrdad;Gargari, Seyyed Latif Mousavi
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1250-1256
    • /
    • 2011
  • In this study, Bacillus licheniformis cells were immobilized by entrapment in calcium alginate beads and were used for production of alkaline protease by repeated batch process. In order to increase the stability of the beads, the immobilization procedure was optimized by statistical full factorial method, by which three factors including alginate type, calcium chloride concentration, and agitation speed were studied. Optimization of the enzyme production medium, by the Taguchi method, was also studied. The obtained results showed that optimization of the cell immobilization procedure and medium constituents significantly enhanced the production of alkaline protease. In comparison with the free-cell culture in pre-optimized medium, about 7.3-fold higher productivity was resulted after optimization of the overall procedure. Repeated batch mode of operation, using optimized conditions, resulted in continuous production of the alkaline protease for 13 batches in 19 days.

Tolerance Analysis and Optimization for a Lens System of a Mobile Phone Camera (휴대폰용 카메라 렌즈 시스템의 공차최적설계)

  • Jung, Sang-Jin;Choi, Dong-Hoon;Choi, Byung-Lyul;Kim, Ju-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.397-406
    • /
    • 2011
  • Since tolerance allocation in a mobile phone camera manufacturing process greatly affects production cost and reliability of optical performance, a systematic design methodology for allocating optimal tolerances is required. In this study, we proposed the tolerance optimization procedure for determining tolerances that minimize production cost while satisfying the reliability constraints on important optical performance indices. We employed Latin hypercube sampling for evaluating the reliabilities of optical performance and a function-based sequential approximate optimization technique that can reduce computational burden and well handle numerical noise in the tolerance optimization process. Using the suggested tolerance optimization approach, the optimal production cost was decreased by 30.3 % compared to the initial cost while satisfying the two constraints on the reliabilities of optical performance.

Optimization of Green Ammonia Production Facility Configuration in Australia for Import into Korea

  • Hyun-Chang Shin;Hak-Soo Mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_1
    • /
    • pp.269-276
    • /
    • 2024
  • Many countries across the world are making efforts beyond reducing CO2 levels and declaring 'net zero,' which aims to cut greenhouse gas emissions to zero by not emitting any carbon or capturing carbon, by 2050. Hydrogen is considered a key energy source to achieve carbon neutrality goals. Korean companies are also interested in building overseas green ammonia production plants and importing hydrogen into Korea in the form of ammonia. Green hydrogen production uses renewable energy sources such as solar and wind power, but the variability of power production poses challenges in plant design. Therefore, optimization of the configuration of a green ammonia production plant using renewable energy is expected to contribute as basic information for securing the economic feasibility of green ammonia production.

Optimization of Tyrosinase Production using Neurospora crassa (Neurospora crassa를 이용한 Tyrosinase 생산의 최적화)

  • 채희정;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.3
    • /
    • pp.281-289
    • /
    • 1991
  • Neurospora crassa (KCTC 6079) produces tyrosinase (EC 1.14.18.1) during sexual differentiation under derepressed conditions in the presence of inducers such as amino acid analogues, antimetabolites or protein synthesis inhibitors. The selection of inducer concentration and induction time as well as inducer type are critical for the optimization of the enzyme production. The best inducer was found to be cycloheximide. Since cycloheximide was toxic to the cells, an optimal inducer concentration and an optimal induction time were determined to maximize the enzyme production from batch cultures. Mathematical models for the cell growth and the enzyme production were proposed and used for process optimization. By optimizing the induction conditions, maximum tyrosinase productivity was increased significantly.

  • PDF

A Study on Transportation Optimization and Efficient Production Method of Raw Materials for Pellet for Construction of Supply Chain Management

  • Choi, Sang Hyun;Lee, Jae Hwan;Bakyt, Bekzhanov;Woo, Jong Choon
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.2
    • /
    • pp.173-181
    • /
    • 2016
  • This study designed a model of the efficient production schemes and raw materials transportation optimization of current South Korean's simple and monolithic distribution system of wood to build a SCM (supply chain management) as a basic level to establish a distribution of future by pellet production of raw materials costs and reduce transport costs, and specifically to forest of pallet to contribute to revitalizing the market. The result of each transportation costs after building the best transportation network from raw material supply area to demand area applying transport law was 964,600 thousands Won from 6 supply areas to 7 demand areas. And the result of each model's analysis to get the pellet's efficient production through production cost reduction showed that it reduced from 325,701 Won/t to 240,106 Won/t, results of existing efficient pellet for the production model 8,233 tons over 20,000 tons annual production capacity from the size of the expanded production capacity when the expansion. However, when the production size expanded to 50,000 Tons of the production, the effect was very small even though production cost decreased.

Medium optimization for keratinase production by a local Streptomyces sp. NRC 13S under solid state fermentation

  • Shata, Hoda Mohamed Abdel Halim;Farid, Mohamed Abdel Fattah
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.2
    • /
    • pp.119-129
    • /
    • 2013
  • Thirteen different Streptomyces isolates were evaluated for their ability to produce keratinase using chicken feather as a sole carbon and nitrogen sources under solid state fermentation (SSF). Streptomyces sp. NRC 13S produced the highest keratinase activity [1,792 U/g fermented substrate (fs)]. The phenotypic characterization and analysis of 16S rDNA sequencing of the isolate were studied. Optimization of SSF medium for keratinase production by the local isolate, Streptomyces sp. NRC13S, was carried out using the one-variable-at-a-time and the statistical approaches. In the first optimization step, the effect of incubation period, initial moisture content, initial pH value of the fermentation medium, and supplementation of some agro-industrial by-products on keratinase production were evaluated. The strain produced about 2,310 U/gfs when it grew on chicken feather with moisture content of 75% (w/w), feather: fodder yeast ratio of 70:30 (w/w), and initial pH 7 using phosphate buffer after 8 days. Based on these results, the Box-Behnken design and response surface methodology were applied to find out the optimal conditions for the enzyme production. The corresponding maximal production of keratinase was about 2,569.38 U/gfs.

Optimization of Culturing Conditions for Improved Production of Bioactive Metabolites by Pseudonocardia sp. VUK-10

  • Kiranmayi, Mangamuri Usha;Sudhakar, Poda;Sreenivasulu, Kamma;Vijayalakshmi, Muvva
    • Mycobiology
    • /
    • v.39 no.3
    • /
    • pp.174-181
    • /
    • 2011
  • The purpose of the present study was to investigate the influence of cultural and environmental parameters affecting the growth and bioactive metabolite production of the rare strain VUK-10 of actinomycete Pseudonocardia, which exhibits a broad spectrum of in vitro antimicrobial activity against bacteria and fungi. Production of bioactive metabolites by the strain was high the in modified yeast extract-malt extract-dextrose (ISP-2) broth, as compared to other tested media. Glucose (1%) and tryptone (0.25%) were found to be the most suitable carbon and nitrogen sources, respectively, for optimum production of growth and bioactive metabolites. Maximum production of bioactive metabolites was found in the culture medium with initial pH 7 incubated with the strain for four days at $30^{\circ}C$, under shaking conditions. This is the first report on the optimization of bioactive metabolites by Pseudonocardia sp. VUK-10.

Optimization of Extracellular Production of Recombinant Human Bone Morphogenetic Protein-7 (rhBMP-7) with Bacillus subtilis

  • Kim, Chun-Kwang;Rhee, Jong Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.188-196
    • /
    • 2014
  • Extracellular production of recombinant human bone morphogenetic protein-7 (rhBMP-7) was carried out through the fermentation of Bacillus subtilis. Three significant fermentation conditions and medium components were selected and optimized to enhance the rhBMP-7 production by using the response surface methodology (RSM). The optimum values of the three variables for the maximum extracellular production of rhBMP-7 were found to be 2.93 g/l starch, 5.18 g/l lactose, and a fermentation time of 34.57 h. The statistical optimization model was validated with a few fermentations of B. subtilis in shake flasks under optimized and unoptimized conditions. A 3-L jar fermenter using the shake-flask optimized conditions resulted in a higher production (413 pg/ml of culture medium) of rhBMP-7 than in a shake flask (289.1 pg/ml), which could be attributed to the pH being controlled at 6.0 and constant agitation of 400 rpm with aeration of 1 vvm.

Optimal buffer size control of serial production lines with quality inspection machines

  • Han, Man-Soo;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.350-353
    • /
    • 1996
  • In this paper, based on the performance analysis of serial production lines with quality inspection machines, we develope an buffer size optimization method to maximize the production rate. The total sum of buffer sizes are given and a constant, and under this constraint, using the linear approximation method, we suggest a closed form solution for the optimization problem with an acceptable error. Also, we show that the upstream and downstream buffers of the worst performance machine have a significant effect on the production rate. Finally, the suggested methods are validated by simulations.

  • PDF

An Optimization Model for an Production-Distribution Planning with Consideration of a Transportation Time (운송시간을 고려한 생산-분배계획을 위한 최적화모델)

  • Lim, Seok-Jin;Jeong, Suk-Jae
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.1
    • /
    • pp.139-144
    • /
    • 2008
  • Recently, a multi-facility, multi-product and multi-period industrial production-distribution planning problem has been widely investigated in Supply Chain Management (SCM). One of the key issues in the current SCM research area involves reducing both production and distribution costs. We have developed an optimization model to tackle the above problems under the restricted conditions such as transportation time and a zero inventory. Computational experiments using commercial tool Ms-Excel Solver show that the real size problems we encountered can be solved in reasonable time. The model can be used to decide an appropriate production-distribution planning problem in SCM research area.