• Title/Summary/Keyword: optimization of enzyme production

Search Result 136, Processing Time 0.024 seconds

Studies on Microbial Penicillin Amidase ( I ) Optimization of the Enzyme Production from Escherichia coli (미생물 페니실린 아미다제에 관한 연구 (I) E. coli로부터 효소생산 조건의 최적화)

  • Kim, Bong-Hee;Seong, Baik-Lin;Mheen, Tae-Iek;Moon H. Ban
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.1
    • /
    • pp.29-34
    • /
    • 1981
  • To maximize the production of penicillin amidase from Estherichia coli (ATCC 9637), the media composition and several factors affecting the engyme production during fermentation were studied. The optimal media composition was found to be; 3.5% tryptone, 1.5% monosodium glutamate and 0.5% yeast extract. The addition of 0.15% phenylacetic acid as an enzyme inducer at the initial stage of cultivation increased the engyme productivity about 5 fold. It was found that the engyme activity reached maximum within 16hr of cultivation. The maximum production of the enzyme obtained was about 102.5 units/l broth under the optimized condition. The enzyme production was markedly increased by the optimization as compared with those previously reported.

  • PDF

Studies on Isolation of a Lytic Fungi and Optimization of the Lytic Enzyme Production (효모세포벽 분해효소 생산균의 분리(分離), 동정(同定) 및 효소생산에 관한 연구)

  • Oh, Man-Jin;Kim, Chan-Jo
    • Applied Biological Chemistry
    • /
    • v.20 no.1
    • /
    • pp.123-129
    • /
    • 1977
  • A potent lytic strain was selected by an extensive screening test of microorganisms isolated from soils and sewages on the medium containing baker's yeast as a carbon source. This strain (M-10) was identified to a strain of Humicola sp. by the Genera of Fungi (Clements, 1964). The strain was cultured on the basal medium composed of 2% of baker's yeast, 0.3% of $K_2HPO_4$, 0.01% of $MgSO_4{\cdot}7H_2O$, 0.1% of yeast extract in a shaking incubator. Cultural conditions for lytic enzyme production has been studied, and the results obtained were as follows: 1. The Optimal conditions for lytic enzyme production were: initial pH 5.5 to 6.0, temperature $33^{\circ}C$ in shaking culture. 2. Among the various carbon sources, baker's yeast (4%) was the best for lytic enzyme production, increasing the level of activity eight, times higher than when grown on glucose (1%). 3. The most effective concentration of $K_2HPO_4\;and\;MgSO_4{\cdot}7H_2O$ in the basal medium for lytic enzyme production was 0.1% and 0.01% respectively. 4. When the strain was cultured under the optimal conditions, the production of lytic enzyme was maximized in 72 hours.

  • PDF

Medium optimization for keratinase production by a local Streptomyces sp. NRC 13S under solid state fermentation

  • Shata, Hoda Mohamed Abdel Halim;Farid, Mohamed Abdel Fattah
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.2
    • /
    • pp.119-129
    • /
    • 2013
  • Thirteen different Streptomyces isolates were evaluated for their ability to produce keratinase using chicken feather as a sole carbon and nitrogen sources under solid state fermentation (SSF). Streptomyces sp. NRC 13S produced the highest keratinase activity [1,792 U/g fermented substrate (fs)]. The phenotypic characterization and analysis of 16S rDNA sequencing of the isolate were studied. Optimization of SSF medium for keratinase production by the local isolate, Streptomyces sp. NRC13S, was carried out using the one-variable-at-a-time and the statistical approaches. In the first optimization step, the effect of incubation period, initial moisture content, initial pH value of the fermentation medium, and supplementation of some agro-industrial by-products on keratinase production were evaluated. The strain produced about 2,310 U/gfs when it grew on chicken feather with moisture content of 75% (w/w), feather: fodder yeast ratio of 70:30 (w/w), and initial pH 7 using phosphate buffer after 8 days. Based on these results, the Box-Behnken design and response surface methodology were applied to find out the optimal conditions for the enzyme production. The corresponding maximal production of keratinase was about 2,569.38 U/gfs.

Isolation and Identification of Lipolytic Enzyme Producing Pseudomonas sp. OME and Optimization of Cultural Conditions (지방분해효소 생산균 Pseudomonas sp. OME 의 분리 동정 및 배양조건 최적화)

  • Kumar, G.Satheesh;Reddy, T. Kiran;Madhavi, B.;Teja, P.Charan;Chandra, M.Subhosh;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.20 no.5
    • /
    • pp.662-669
    • /
    • 2010
  • Lipolytic enzyme-producing bacteria were isolated from edible oil mill effluents on tributyrin agar medium. The shake-flask-scale studies yielded a promising isolate and it was identified as Pseudomonas sp. An OME using various microbiological observations such as cultural, microscopic, and biochemical tests was undertaken and confirmed using PIBWIN bacterial identification software. Lipolytic enzyme production was screened with oils such as sunflower, caster, coconut, tributyrin, and olive. Amongst these, olive oil showed an increased lipase production 6.1 U/ml. In view of the highest lipolytic enzyme production with olive oil, further optimizations were carried out using olive oil as a carbon source. Lipolytic enzyme production was optimized by a conventional 'one variable at a time' approach and the significant factors were further analyzed statistically using response surface methodology (RSM). The effect of physical factors such as incubation time, temperature, initial medium pH, and nutritional factors such as concentration of olive oil and yeast extract were examined for lipase production. Lipolytic enzyme secretion was strongly affected by three variables (incubation time, concentration of yeast extract and olive oil). Therefore, the interaction of these three factors was further optimized using response surface methodology. The optimized conditions of lipase production using response surface methodology yielded a maximum of 9.62 U/ml with optimum conditions for incubation, yeast extract and olive oil concentrations were found to be 48 hr, 0.3 g. and 0.9 ml. respectively.

효모 세포벽 분해효소 생산균의 탐색 및 효소생산 최적조건의 조사

  • Cha, Seong-Kwan;Choi, Hea-Suk;Kim, Wang-June;Yoon, Suk-Hoo;Kim, Young-Bae
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.2
    • /
    • pp.143-148
    • /
    • 1996
  • Thousand actinomycetes and 50 soil samples were used for the isolation of microorganisms producing yeast cell wall lytic enzymes. Among 493 strains producing large clear zones on autolysed washed yeast (AWY), 117 strains were selected on living yeast cell agar plates. With the method of lytic activity, one strain (St-1702) was selected, which was temporarily identified as Streptomyces eurythermus. The optimal condition for enzyme production of this strain was partially determined as follows: incubation of the strain for 3 days at 30$\circ$C in the medium containing 2% freeze dried yeast cell, 1% glucose, 1% K$_{2}$HPO$_{4}$, 0.01% MgSO$_{4}$'7H$_{2}$O, 0.5% peptone, and 0.2% (NH$_{4}$)$_{2}$CO$_{3}$ with pH 7.0. The protoplast formation of yeast by using the enzyme produced by this strain was compared with commercial enzymes.

  • PDF

A New Approach to Produce Resveratrol by Enzymatic Bioconversion

  • Che, Jinxin;Shi, Junling;Gao, Zhenhong;Zhang, Yan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1348-1357
    • /
    • 2016
  • An enzymatic reaction system was developed and optimized for bioconversion of resveratrol from glucose. Liquid enzyme extracts were prepared from Alternaria sp. MG1, an endophytic fungus from grape, and used directly or after immobilization with sodium alginate. When the enzyme solution was used, efficient production of resveratrol was found within 120 min in a manner that was pH-, reaction time-, enzyme amount-, substrate type-, and substrate concentration-dependent. After the optimization experiments using the response surface methodology, the highest value of resveratrol production (224.40 μg/l) was found under the conditions of pH 6.84, 0.35 g/l glucose, 0.02 mg/l coenzyme A, and 0.02 mg/l ATP. Immobilized enzyme extracts could keep high production of resveratrol during recycling use for two to five times. The developed system indicated a potential approach to resveratrol biosynthesis independent of plants and fungal cell growth, and provided a possible way to produce resveratrol within 2 h, the shortest period needed for biosynthesis of resveratrol so far.

Assessment and Optimization of Xylanase Production Using Mono-Culture and Co-Cultures of Bacillus subtilis and Bacillus pumilus

  • Chitranshu Pandey;Neeraj Gupta
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.59-68
    • /
    • 2023
  • Xylanase is an industrially relevant enzyme used for the production of xylobiose and xylose. Various methods are used to enhance the microbial yield of xylanase. In the present study, co-culturing of Bacillus subtilis and Bacillus pumilus were investigated using submerged fermentation for xylanase production, which was markedly increased when sal, sagwan, newspaper, wheat bran, and xylan were used as single carbon sources. Maximum xylanase production was reported after 5 days of incubation in optimized media at pH 7.0 and 37℃, resulting in 2.69 ± 0.25 µmol/min by coculture. The 1:1 ratio of sal and sagwan in optimized production media was shown to be suitable for xylanase synthesis in submerged fermentation (SMF). In comparison to mono-culture using B. pumilus and B. subtilis, co-culturing resulted in an overall 3.8-fold and 2.15-fold increase in xylanase production, respectively.

Isolation and Identification of Fibrinolytic Enzyme Producing Strain from Shrimp Jeot-Gal, a Tiny Salted Shrimps, and Medium Optimization for Enzyme Production (새우젓에서 혈전용해효소 생산균주의 분리, 동정 및 효소생산 배지의 최적화)

  • Jang, Sun-Ae;Kim, Myung-Hee;Lee, Myung-Sun;Lee, Myung-Ja;Jhee, Ok-Hwa;Oh, Tae-Kwang;Sohn, Cheon-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1648-1653
    • /
    • 1999
  • A strain of potential producer of fibrinolytic enzyme was isolated from shrimp Jeot-Gal, a tiny salted shrimps, and identified as Bacillus sp.. The preliminary experiment showed an enzyme yield of 18 U/mL in medium for screening. The carbon, nitrogen and salts significantly influenced the fibrinolytic enzyme production. An optimized medium containing 2% skim milk, 2% soluble starch and 3% NaCl (pH 7.5) after 72 hrs fermentation time at $37^{\circ}C$ yielded 3-fold increase in enzyme production, 62 U/mL.

  • PDF

Improvement of Amidase Production by a Newly Isolated Delftia tsuruhatensis ZJB-05174 Through Optimization of Culture Medium

  • Wang, Yuan-Shan;Xu, Jian-Miao;Zheng, Ren-Chao;Zheng, Yu-Guo;Shen, Yin-Chu
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1932-1937
    • /
    • 2008
  • The R-amidase production by a newly isolated strain of Delftia tsuruhatensis ZJB-05174 was optimized in this paper. Effects of factors such as carbon sources, nitrogen sources, and inducers on amidase production were investigated. The medium composition was optimized using central composite designs and response surface analysis. The optimal medium components for enhanced amidase production were found to be as follows: glucose, 8.23 g/l; yeast extract, 11.59 g/l; 2,2-(R,S)-dimethylcyclopropane carboxamide, 1.76 g/l; NaCl, 1 g/l; ${KH_2}{PO_4}$ 1 g/l; and ${K_2}{HPO_4}$ 1 g/l. A maximum enzyme production of 528.21 U/l was obtained under the optimized conditions, which was 4.7 times higher than that obtained under initial conditions.

Optimization of Endoglucanase Production from Fomitopsis pinicola Mycelia (Fomitopsis pinicola 균사체로부터 Endoglucanase의 최적생산)

  • Gu, Ji-Min;Park, Sang-Shin
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.145-152
    • /
    • 2013
  • The culture conditions to maximize the production of endoglucanase (EC 3.2.1.4) from the brown rot fungus Fomitopsis pinicola MKACC 54347 mycelia were investigated. Among the tested media for endoglucanase production, Mandel's mineral salts medium (MSM; 1% cellulose, 0.1% peptone, 0.14% $(NH_4)_2SO_4$, 0.03% urea, 0.2% $KH_2PO_4$, 0.03% $MgSO_4{\cdot}7H_2O$, 0.03% $CaCl_2$, and 0.1% trace metal solution (19.8 mM $FeSO_4$, 13.0 mM $MnSO_4$, 12.2 mM $ZnSO_4$, and 15.4 mM $CoCl_2$)) produced the highest activity of the enzyme. To optimize the medium composition for enzyme activity, the effects of various carbon, nitrogen, phosphorus, and inorganic sources were investigated in MSM. Maximal enzyme production was accomplished using a medium containing 2% carboxymethyl cellulose (CMC), 2% yeast extract, 0.2% $KH_2PO_4$, 0.03% $MnSO_4$, and 0.3% trace metal solution. Different physiological conditions, like incubation period and temperature, were also examined to assess their influence on enzyme production. Enzyme production from F. pinicola reached its highest level after cultivation for 8 days at $25^{\circ}C$. Nondenaturing polyacrylamide gel electrophoresis (PAGE), followed by the endoglucanase activity staining using CMC as the substrate, was performed to identify the endoglucanase under the culture conditions studied. Zymogram analysis of the culture supernatant revealed an endoglucanase band with a molecular mass of 52 kDa. The optimum pH and temperature for enzyme activity were $55^{\circ}C$ and pH 5.0, respectively.