Browse > Article
http://dx.doi.org/10.4014/jmb.0800.224

Improvement of Amidase Production by a Newly Isolated Delftia tsuruhatensis ZJB-05174 Through Optimization of Culture Medium  

Wang, Yuan-Shan (Zhejiang University of Technology)
Xu, Jian-Miao (Zhejiang University of Technology)
Zheng, Ren-Chao (Zhejiang University of Technology)
Zheng, Yu-Guo (Zhejiang University of Technology)
Shen, Yin-Chu (Zhejiang University of Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.12, 2008 , pp. 1932-1937 More about this Journal
Abstract
The R-amidase production by a newly isolated strain of Delftia tsuruhatensis ZJB-05174 was optimized in this paper. Effects of factors such as carbon sources, nitrogen sources, and inducers on amidase production were investigated. The medium composition was optimized using central composite designs and response surface analysis. The optimal medium components for enhanced amidase production were found to be as follows: glucose, 8.23 g/l; yeast extract, 11.59 g/l; 2,2-(R,S)-dimethylcyclopropane carboxamide, 1.76 g/l; NaCl, 1 g/l; ${KH_2}{PO_4}$ 1 g/l; and ${K_2}{HPO_4}$ 1 g/l. A maximum enzyme production of 528.21 U/l was obtained under the optimized conditions, which was 4.7 times higher than that obtained under initial conditions.
Keywords
Amidase; optimization; Delftia tsuruhatensis; 2,2-dimethylcyclopropane carboxamide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Hermes, H. F. M., R. F. Tandler, T. Sonke, L. Dijkhuizen, and E. M. Meijer. 1994. Purification and characterization of an Lamino amidase from Mycobacterium neoaurum ATCC 25795. Appl. Environ. Microbiol. 60: 153-159
2 Kakeya, H., N. Sakai, T. Sugai, and H. Ohta. 1991. Microbial hydrolysis as a potent method for the preparation of optically active nitriles, amides and carboxylic acids. Tetrahed. Lett. 32: 1343-1346   DOI   ScienceOn
3 Kobayashi, M., H. Komeda, T. Nagasawa, H. Yamada, and S. Shimizu. 1993. Occurrence of amidases in the industrial microbe Rhodococcus rhodochrous J1. Biosci. Biotechnol. Biochem. 57: 1949-1950   DOI
4 Liang, L. Y., Y. G. Zheng, and Y. C. Shen. 2008. Optimization of $\beta$-alanine production from $\beta$-aminopropionitrile by resting cells of Rhodococcus sp. G20 in a bubble column reactor using response surface methodology. Process Biochem. 43: 758-764   DOI
5 Yeom, S. J., H. J. Kim, and D. K. Oh, 2007. Enantioselective production of 2,2-dimethylcyclopropane carboxylic acid from 2,2-dimethylcyclopropane carbonitrile using the nitrile hydratase and amidase of Rhodococcus erythropolis ATCC 25544. Enzyme Microb. Technol. 41: 842-848   DOI   ScienceOn
6 Birnbaum, J., F. M. Kahan, H. Kropp, and J. S. Macdonald. 1985. Carbapenems, a new class of beta-lactam antibiotics: Discovery and development of imipenem/cilastatin. Am. J. Med. 78: 3-21
7 Huisman, G. W. and D. Gray. 2002. Towards novel processes for the fine-chemical and pharmaceutical industries. Curr. Opin. Biotechnol. 13: 352-358   DOI   ScienceOn
8 Hensel, M., S. Lutz-Wahl, and L. Fischer. 2002. Stereoselective hydration of (R,S)-phenylglycine nitrile by new whole cell biocatalysts. Tetrahedron 13: 2629-2633   DOI   ScienceOn
9 Hongpattarakere, T., H. Komeda, and Y. Asano. 2005. Purification, characterization, gene cloning and nucleotide sequencing of Dspecific amino acid amidase from soil bacterium: Delftia acidovorans. J. Ind. Microbiol. Biotechnol. 32: 567-576   DOI   ScienceOn
10 Singh, B. and T. Satyanarayana. 2008. Improved phytase production by a thermophilic mould Sporotrichum thermophile in submerged fermentation due to a statistical optimization. Bioresour. Technol. 99: 824-830   DOI   ScienceOn
11 Trott, S., S. Bürger, C. Calaminus, and A. Stolx. 2002. Cloning and heterologous expression of an enantioselective amidase from Rhodococcus erythropolis strain MP50. Appl. Environ. Microbiol. 68: 3279-3286   DOI   ScienceOn
12 Zheng, R. C., Y. S. Wang, Z. Q. Liu, L. Y. Xing, Y. G. Zheng, and Y. C. Shen. 2007. Isolation and characterization of Delftia tsuruhatensis ZJB-05174, capable of R-enantioselective degradation of 2,2-dimethylcyclopropanecarboxamide. Res. Microbiol. 158: 258-264   DOI   ScienceOn
13 Martinkova, L., V. Kren, L. Cvak, M. Ovesna, and I. Prepechalova. 2000. Hydrolysis of lysergamide to lysergic acid by Rhodococcus equi A4. J. Biotechnol. 84: 63-66   DOI
14 Joeres, U. and M. R. Kula. 1994. Screening for a novel enzyme hydrolyzing L-carnitine amide. Appl. Microbiol. Biotechnol. 40: 599-605   DOI   ScienceOn
15 Liu, Z. Q., Z. C. Hu, Y. G. Zheng, and Y. C. Shen. 2008. Optimization of cultivation conditions for the production of 1,3- dihydroxyacetone by Pichia membranifaciens using response surface methodology. Biochem. Eng. J. 38: 285-291   DOI   ScienceOn
16 Raoa, Y. K., S. C. Lu, B. L. Liu, and Y. M. Tzeng. 2006. Enhanced production of an extracellular protease from Beauveria bassiana by optimization of cultivation processes. Biochem. Eng. J. 28: 57-66   DOI   ScienceOn
17 Yamamoto, K., K. Otsubo, A. Matsuo, T. Hayashi, I. Fujimatsu, and K. Komatsu. 1996. Production of R-(-)-ketoprofen from an amide compound by Comamonas acidovorans KPO-2771-4. Appl. Environ. Microbiol. 62: 152-155
18 Baek, D. H., S. J. Kwon, S. P. Hong, M. S. Kwak, M. H. Lee, J. J. Song, S. G. Lee, K. H. Yoon, and M. H. Sung. 2003. Characterization of a thermostable D-stereospecific alanine amidase from Brevibacillus borstelensis BCS-1. Appl. Environ. Microbiol. 69: 980-986   DOI   ScienceOn
19 Hann, E. C., A. E. Sigmund, S. K. Fager, F. B. Cooling, J. E. Gavagan, M. G. Bramucci, S. Chauhan, M. S. Payne, and R. DiCosimo. 2004. Regioselective biocatalytic hydrolysis of (E,Z)-2-methyl-2-butenenitrile for production of (E)-2-methyl-2- butenoic acid. Tetrahedron 60: 577-581   DOI   ScienceOn
20 Krieg, L., M. B. Ansorge-Schumacher, and M. R. Kula. 2002. Screening for amidases: Isolation and characterization of a novel D-amidase from Variovorax paradoxus. Adv. Synth. Catal. 344: 965-973   DOI   ScienceOn
21 Zheng, R. C., Y. G. Zheng, and Y. C. Shen. 2007. A screening system for active and enantioselective amidase based on its acyl transfer activity. Appl. Microbiol. Biotechnol. 74: 256-262   DOI   ScienceOn
22 Sonke, T., S. Ernste, R. F. Tandler, B. Kaptein, W. P. H. Peeters, F. B. J. van Assema, M. G. Wubbolts, and H. E. Schoemaker. 2005. L-Selective amidase with extremely broad substrate specificity from Ochrobactrum anthropi NCIMB 40321. Appl. Environ. Microbiol. 71: 7961-7973   DOI   ScienceOn
23 Zheng, R. C., Y. G. Zheng, and Y. C. Shen. 2007. Enantioseparation and determination of 2,2-dimethylcyclopropanecarboxamide and corresponding acid in the bioconversion broth by gas chromatography. Biomed. Chromatogr. 21: 610-615   DOI   ScienceOn
24 Adinarayana, K. and P. Ellaiah. 2002. Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp. J. Pharm. Sci. 5: 272-278
25 Li, Yin., F. J. Cui, Z. Q. Liu, Y. Y. Xu, and H. Zhao. 2007. Improvement of xylanase production by Penicillium oxalicum ZH-30 using response surface methodology. Enzyme Microb. Technol. 40: 1381-1388   DOI   ScienceOn
26 Soni, P., M. Singh, A. L. Kamble, and U. C. Ban. 2007. Response surface optimization of the critical medium components for carbonyl reductase production by Candida viswanathii MTCC 5158. Bioresour. Technol. 98: 829-833   DOI   ScienceOn
27 Straathof, A. J. J., S. Panke, and A. Schmid. 2002. The production of fine chemicals by biotransformations. Curr. Opin. Biotechnol. 13: 548-556   DOI   ScienceOn
28 Bommarius, A. S. and B. R. Riebel. 2004. Biocatalysis, pp. 1- 14. Wiley-VCH Verlag GmbH & Co. KGaA, Weiheim
29 Chauhan, K., U. Trivedi, and K. C. Patel. 2006. Application of response surface methodology for optimization of lactic acid production using date juice. J. Microbiol. Biotechnol. 16: 1410-1415   과학기술학회마을