• Title/Summary/Keyword: optimization method of building system

Search Result 118, Processing Time 0.019 seconds

Co-Evolutionary Algorithm and Extended Schema Theorem

  • Sim, Kwee-Bo;Jun, Hyo-Byung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.95-110
    • /
    • 1998
  • Evolutionary Algorithms (EAs) are population-based optimization methods based on the principle of Darwinian natural selection. The representative methodology in EAs is genetic algorithm (GA) proposed by J. H. Holland, and the theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. In the meaning of these foundational concepts, simple genetic algorithm (SGA) allocate more trials to the schemata whose average fitness remains above average. Although SGA does well in many applications as an optimization method, still it does not guarantee the convergence of a global optimum in GA-hard problems and deceptive problems. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve in contrast with traditional single population evolutionary algorithm. In this paper we show why the co-evolutionary algorithm works better than SGA in terms of an extended schema theorem. And predator-prey co-evolution and symbiotic co-evolution, typical approaching methods to co-evolution, are reviewed, and dynamic fitness landscape associated with co-evolution is explained. And the experimental results show a co-evolutionary algorithm works well in optimization problems even though in deceptive functions.

  • PDF

Development of an Artificial Neural Network Model for a Predictive Control of Cooling Systems (건물 냉방시스템의 예측제어를 위한 인공신경망 모델 개발)

  • Kang, In-Sung;Yang, Young-Kwon;Lee, Hyo-Eun;Park, Jin-Chul;Moon, Jin-Woo
    • KIEAE Journal
    • /
    • v.17 no.5
    • /
    • pp.69-76
    • /
    • 2017
  • Purpose: This study aimed at developing an Artificial Neural Network (ANN) model for predicting the amount of cooling energy consumption of the variable refrigerant flow (VRF) cooling system by the different set-points of the control variables, such as supply air temperature of air handling unit (AHU), condenser fluid temperature, condenser fluid pressure, and refrigerant evaporation temperature. Applying the predicted results for the different set-points, the control algorithm, which embedded the ANN model, will determine the most energy efficient control strategy. Method: The ANN model was developed and tested its prediction accuracy by using matrix laboratory (MATLAB) and its neural network toolbox. The field data sets were collected for the model training and performance evaluation. For completing the prediction model, three major steps were conducted - i) initial model development including input variable selection, ii) model optimization, and iii) performance evaluation. Result: Eight meaningful input variables were selected in the initial model development such as outdoor temperature, outdoor humidity, indoor temperature, cooling load of the previous cycle, supply air temperature of AHU, condenser fluid temperature, condenser fluid pressure, and refrigerant evaporation temperature. The initial model was optimized to have 2 hidden layers with 15 hidden neurons each, 0.3 learning rate, and 0.3 momentum. The optimized model proved its prediction accuracy with stable prediction results.

Modeling and experimental verification of phase-control active tuned mass dampers applied to MDOF structures

  • Yong-An Lai;Pei-Tzu Chang;Yan-Liang Kuo
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.281-295
    • /
    • 2023
  • The purpose of this study is to demonstrate and verify the application of phase-control absolute-acceleration-feedback active tuned mass dampers (PCA-ATMD) to multiple-degree-of-freedom (MDOF) building structures. In addition, servo speed control technique has been developed as a replacement for force control in order to mitigate the negative effects caused by friction and inertia. The essence of the proposed PCA-ATMD is to achieve a 90° phase lag for a structure by implementing the desired control force so that the PCA-ATMD can receive the maximum power flow with which to effectively mitigate the structural vibration. An MDOF building structure with a PCA-ATMD and a real-time filter forming a complete system is modeled using a state-space representation and is presented in detail. The feedback measurement for the phase control algorithm of the MDOF structure is compact, with only the absolute acceleration of one structural floor and ATMD's velocity relative to the structure required. A discrete-time direct output-feedback optimization method is introduced to the PCA-ATMD to ensure that the control system is optimized and stable. Numerical simulation and shaking table experiments are conducted on a three-story steel shear building structure to verify the performance of the PCA-ATMD. The results indicate that the absolute acceleration of the structure is well suppressed whether considering peak or root-mean-square responses. The experiment also demonstrates that the control of the PCA-ATMD can be decentralized, so that it is convenient to apply and maintain to real high-rise building structures.

Optimum topology design of geometrically nonlinear suspended domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.667-694
    • /
    • 2015
  • The suspended dome system is a new structural form that has become popular in the construction of long-span roof structures. Suspended dome is a kind of new pre-stressed space grid structure that has complex mechanical characteristics. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The length of the strut, the cable initial strain, the cross-sectional area of the cables and the cross-sectional size of steel elements are adopted as design variables and the minimum volume of each dome is taken as the objective function. The topology optimization on lamella dome is performed by considering the type of the joint connections to determine the optimum number of rings, the optimum number of joints in each ring, the optimum height of crown and tubular sections of these domes. A simple procedure is provided to determine the configuration of the dome. This procedure includes calculating the joint coordinates and steel elements and cables constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). This paper explores the efficiency of lamella dome with pin-joint and rigid-joint connections and compares them to investigate the performance of these domes under wind (according to the ASCE 7-05), dead and snow loading conditions. Then, a suspended dome with pin-joint single-layer reticulated shell and a suspended dome with rigid-joint single-layer reticulated shell are discussed. Optimization is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for suspended domes.

OPTIMIZING QUALITY AND COST OF METAL CURTAIN WALL USING MULTI-OBJECTIVE GENETIC ALGORITHM AND QUALITY FUNCTION DEPLOYMENT

  • Tae-Kyung Lim;Chang-Baek Son;Jae-Jin Son;Dong-Eun Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.409-416
    • /
    • 2009
  • This paper presents a tool called Quality-Cost optimization system (QCOS), which integrates Multi-Objective Genetic Algorithm (MOGA) and Quality Function Deployment (QFD), for tradeoff between quality and cost of the unitized metal curtain-wall unit. A construction owner as the external customer pursues to maximize the quality of the curtain-wall unit. However, the contractor as the internal customer pursues to minimize the cost involved in designing, manufacturing and installing the curtain-wall unit. It is crucial for project manager to find the tradeoff point which satisfies the conflicting interests pursued by the both parties. The system would be beneficial to establish a quality plan satisfying the both parties. Survey questionnaires were administered to the construction owner who has an experience of curtain-wall project, the architects who are the independent assessor, and the contractors who were involved in curtain-wall design and installation. The Customer Requirements (CRs) and their importance weights, the relationship between CRs and Technical Attributes (TAs) consisting of a curtain-wall unit, and the cost ratios of each components consisting curtain-wall unit are obtained from the three groups mentioned previously. The data obtained from the surveys were used as the QFD input to compute the Owner Satisfaction (OS) and Contractor Satisfaction (CS). MOGA is applied to optimize resource allocation under limited budget when multi-objectives, OS and CS, are pursued at the same time. The deterministic multi-objective optimization method using MOGA and QFD is extended to stochastic model to better deal with the uncertainties of QFD input and the variability of QFD output. A case study demonstrates the system and verifies the system conformance.

  • PDF

Research on Facility Layout of Prefabricated Building Construction Site

  • Yang, Zhehui;Lu, Ying;Zhang, Xing;Sun, Mingkang;Shi, Yufeng
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.42-51
    • /
    • 2017
  • Due to the high degree of mechanization and the good environmental benefits, the prefabricated buildings are being promoted in China. The construction site layout of the prefabricated buildings has important influence on its safety benefit. However, few scholars have studied the safety problem on it. Firstly, in order to give a follow-up study foreshadowing the characteristics of prefabricated buildings are analyzed, the research assumptions are given and three types of safety buffers are established. And then a mult-objective model for the prefabricated buildings site layout is presented: taking into account the limits of noise, the coverage of the tower crane and the possibility of exceeding boundaries and overlapping, the constraints are and designed established respectively; Based on the improved System Layout Planning (SLP) method, the efficiency\cost\safety interaction matrices among the facilities are also founded for objective function. For the sake of convenience, a hypothetical facility layout case of the prefabricated building is used, the optimal solution of that is obtained in MATLAB with particle swarm algorithm (PSO), which proves the effectiveness of the model presented in this paper.

  • PDF

Chaotic particle swarm optimization in optimal active control of shear buildings

  • Gharebaghi, Saeed Asil;Zangooeia, Ehsan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.347-357
    • /
    • 2017
  • The applications of active control is being more popular nowadays. Several control algorithms have been developed to determine optimum control force. In this paper, a Chaotic Particle Swarm Optimization (CPSO) technique, based on Logistic map, is used to compute the optimum control force of active tendon system. A chaotic exploration is used to search the solution space for optimum control force. The response control of Multi-Degree of Freedom (MDOF) shear buildings, equipped with active tendons, is introduced as an optimization problem, based on Instantaneous Optimal Active Control algorithm. Three MDOFs are simulated in this paper. Two examples out of three, which have been previously controlled using Lattice type Probabilistic Neural Network (LPNN) and Block Pulse Functions (BPFs), are taken from prior works in order to compare the efficiency of the current method. In the present study, a maximum allowable value of control force is added to the original problem. Later, a twenty-story shear building, as the third and more realistic example, is considered and controlled. Besides, the required Central Processing Unit (CPU) time of CPSO control algorithm is investigated. Although the CPU time of LPNN and BPFs methods of prior works is not available, the results show that a full state measurement is necessary, especially when there are more than three control devices. The results show that CPSO algorithm has a good performance, especially in the presence of the cut-off limit of tendon force; therefore, can widely be used in the field of optimum active control of actual buildings.

Performance tests on the ANN model prediction accuracy for cooling load of buildings during the setback period (셋백기간 중 건물 냉방시스템 부하 예측을 위한 인공신경망모델 성능 평가)

  • Park, Bo Rang;Choi, Eunji;Moon, Jin Woo
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.83-88
    • /
    • 2017
  • Purpose: The objective of this study is to develop a predictive model for calculating the amount of cooling load for the different setback temperatures during the setback period. An artificial neural network (ANN) is applied as a predictive model. The predictive model is designed to be employed in the control algorithm, in which the amount of cooling load for the different setback temperature is compared and works as a determinant for finding the most energy-efficient optimal setback temperature. Method: Three major steps were conducted for proposing the ANN-based predictive model - i) initial model development, ii) model optimization, and iii) performance evaluation. Result:The proposed model proved its prediction accuracy with the lower coefficient of variation of the root mean square errors (CVRMSEs) of the simulated results (Mi) and the predicted results (Si) under generally accepted levels. In conclusion, the ANN model presented its applicability to the thermal control algorithm for setting up the most energy-efficient setback temperature.

Financial Analysis Model Development by Applying Optimization Method in Residential Officetel (최적화 기법을 활용한 주거용 오피스텔 수지분석 모델 개발)

  • Jang, Jun-Ho;Ha, Sun-Geun;Son, Ki-Young;Son, Seung-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.67-76
    • /
    • 2019
  • The domestic construction industry is changing according to its preference for demand and supply along with urbanization and economic development. Accordingly, initial risk assessments is more important than before. In particular, demand for lease-based investment products such as commercial and office buildings has surged as a substitute for financial products due to low interest rates of banks. Therefore, the objective is to suggest a basic study on financial analysis model development by applying optimization method in residential officetel. To achieve the objective, first, the previous studies are investigated. Second, the causal loop diagram is structured based on the collected data. Third, the system dynamics method is used to develop cost-income simulation and optimization model sequentially. Finally, the developed model was verifed through analyzing a case project. In the future, the proposed model can be helpful whether or not conduct execution of an officetel development project to the decision makers.

A Method for Optimizing the Structure of Neural Networks Based on Information Entropy

  • Yuan Hongchun;Xiong Fanlnu;Kei, Bai-Shi
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.30-33
    • /
    • 2001
  • The number of hidden neurons of the feed-forward neural networks is generally decided on the basis of experience. The method usually results in the lack or redundancy of hidden neurons, and causes the shortage of capacity for storing information of learning overmuch. This research proposes a new method for optimizing the number of hidden neurons bases on information entropy, Firstly, an initial neural network with enough hidden neurons should be trained by a set of training samples. Second, the activation values of hidden neurons should be calculated by inputting the training samples that can be identified correctly by the trained neural network. Third, all kinds of partitions should be tried and its information gain should be calculated, and then a decision-tree correctly dividing the whole sample space can be constructed. Finally, the important and related hidden neurons that are included in the tree can be found by searching the whole tree, and other redundant hidden neurons can be deleted. Thus, the number of hidden neurons can be decided. In the case of building a neural network with the best number of hidden units for tea quality evaluation, the proposed method is applied. And the result shows that the method is effective

  • PDF