• Title/Summary/Keyword: optimization conditions

Search Result 3,150, Processing Time 0.029 seconds

Frequency Stabilization Method for Grid Integration of Large-scale Centralized Wind Farms via VSC-HVDC Technology

  • Peng, Yanjian;Li, Yong;Liu, Fang;Xu, Zhiwei;Cao, Yijia
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.547-557
    • /
    • 2018
  • This work proposes a control method of frequency stabilization for grid integration of large-scale wind farms via the voltage source converter-based high-voltage direct current (VSC-HVDC) technology. First, the topology of grid integration of a large-scale wind farm via the VSC-HVDC link is provided, and simple control strategies for wind turbines, wind farm side VSC (WFVSC), and grid side VSC are presented. Second, a mathematical model between the phase angle of WFVSC and the frequency of the wind farm is established. The control principle of the large-scale wind power integrated system is analyzed in theory in accordance with the mathematical model. Third, frequency and AC voltage controllers of WFVSC are designed based on the mathematical model of the relationships between the phase angle of WFVSC and the frequency of the wind farm, and between the modulation index of WFVSC and the voltage of the wind farm. Corresponding controller structures are established by deriving a transfer function, and an optimization method for selecting the parameters of the frequency controller is presented. Finally, a case study is performed under different operating conditions by using the DIgSILENT/PowerFactory software. Results show that the proposed control method has good performance in the frequency stabilization of the large-scale wind power integrated system via the VSC-HVDC technology.

A Study on an Efficient Double-fleet Operation of the Korean High Speed Rail (한국 고속철도의 효율적 중련편성 운영방법에 대한 연구)

  • Oh, Seog-Moon;Sohn, Moo-Sung;Choi, In-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.742-750
    • /
    • 2007
  • This paper presents a mathematical model for a double-fleet operation in Korean high speed rail (HSR). KORAIL has a plan to launch new HSR units in 2010, which are composed of 10 railcars. The double-fleet operation assigns a single-unit or two-unit fleet to a segment, accommodating demand fluctuation. The proposed model assumes stochastic demand and uses chance-constrained constraints to assure a preset service level. It can be used in the tactical planning stage of the rail management as it includes several real-world conditions, such as the capacities of the infra-structures and operational procedures. In the solution approach, the expected revenue in the objective function is linearized by using expected marginal revenue, and the chance-constrained constraints are linearized by assuming that demands are normally distributed. Subsequently, the model can be solved by a mixed-integer linear programming solver fur small size problems. The test results of the model applied to Friday morning train schedules for one month sample data from KTX operation in 2004 shows that the proposed model could be utilized to determine the effectiveness of double-fleet operation, which could significantly increase the expected profit and seat utilization rates when properly maneuvered.

Estimation of Optimum Capacity for Rainwater Storage Facilities based on Mass Balance and Economic Analysis (Mass-balance 및 경제성 분석에 의한 빗물저류시설 적정 규모 산정)

  • Kim, Youngmin;Lee, Sangho;Lee, Jung-Hun;Kim, Ree-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.233-238
    • /
    • 2008
  • Recently, rainwater harvesting facilities have increasingly constructed mainly in elementary schools and government buildings. Nevertheless, few methods are available for efficient planning and design of rainwater harvesting facilities by considering the weather conditions and purpose of rainwater management in each site, which may lead to a construction of uneconomic facilities. The current method estimates the size of rainwater storage tank by multiplying the size of building or plottage with a certain ratio and has many limitations. In this study, we first developed a method for planning and design of rainwater storage facilities using $Rainstock^{TM}$ model, which is based on mass balance, and economic analysis. Then, the model was applied for the design of a rainwater harvesting facility in a building with the catchment area of $1,000m^2$. The model calculation indicated that the economic feasibility of rainwater harvesting depends on not only the size of storage tank but also the water usage rate. When the water usage rate is $1m^3/day$, the rainwater harvesting facility is not cost-effective regardless of the size of the storage tank. With increasing the water usage rate, the economical efficiency of the facility was improved for a specific size of the storage tank. Based on the model calculation, the optimum tank sizes for $5m^3/day$ and $10m^3/day$ of water usage rates were $24m^3$ and $57m^3$, respectively. It is expected that the model is useful for optimization of rainwater storage facilities in planning and designing steps.

Evaluation of membrane fouling characteristics due to manganese and chemical cleaning efficiency in microfiltration membrane process (막여과 정수처리공정에서 망간에 의한 막오염 특성 및 화학세정효율 평가)

  • Kang, Joon-Seok;Park, Seogyeong;Song, Jiyoung;Jeong, Ahyoung;Lee, Jeong-Jun;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.539-549
    • /
    • 2017
  • In water treatment process using microfiltration membranes, manganese is a substance that causes inorganic membrane fouling. As a result of analysis on the operation data taken from I WTP(Water Treatment Plant), it was confirmed that the increase of TMP was very severe during the period of manganese inflow. The membrane fouling fastened the increase of TMP and shortened the service time of filtration or the cleaning cycle. The TMP of the membrane increased to the maximum of $2.13kgf/cm^2$, but it was recovered to the initial level ($0.17kgf/cm^2$) by the 1st acid cleaning step. It was obvious that the main membrane fouling contaminants are due to inorganic substances. As a result of the analysis on the chemical waste, the concentrations of aluminum(146-164 mg/L) and manganese(110-126 mg/L) were very high. It is considered that aluminum was due to the residual unreacted during coagulation step as a pretreatment process. And manganese is thought to be due to the adsorption on the membrane surface as an adsorbate in feed water component during filtration step. For the efficient maintenance of the membrane filtration facilities, optimization of chemical concentration and CIP conditions is very important when finding the abnormal level of influent including foulants such as manganese.

Optimization of energy efficiency through comparative analysis of factors affecting the operation with energy recovery devices on SWRO desalination process (역삼투막 해수담수화 공정에서 에너지 회수장치의 운영인자 비교분석을 통한 에너지 효율 최적화 연구)

  • Kim, Pooreum;Kim, Hyungsoo;Park, Junyoung;Kim, Taewoo;Kim, Minjin;Park, Kitae;Kim, Jihoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Recently, interest in the development of alternative water resources has been increasing rapidly due to environmental pollution and depletion of water resources. In particular, seawater desalination has been attracting the most attention as alternative water resources. As seawater desalination consumes a large amount of energy due to high operating pressure, many researches have been conducted to improve energy efficiency such as energy recovery device (ERD). Consequently, this study aims to compare the energy efficiency of RO process according to ERD of isobaric type which is applied in scientific control pilot plant process of each $100m^3/day$ scale based on actual RO product water. As a result, it was confirmed that efficiency, mixing rate, and permeate conductivity were different depending on the size of the apparatus even though the same principle of the ERD was applied. It is believed that this is caused by the difference in cross-sectional area of the contacted portion for pressure transfer inside the ERD. Therefore, further study is needed to confirm the optimum conditions what is applicable to the actual process considering the correlation with other factors as well as the factors obtained from the previous experiments.

Optimization of gibberellic acid production by Methylobacterium oryzae CBMB20 (지베렐린산 생산을 위한 Methylobacterium oryzae CBMB20의 최적 배양조건 확립)

  • Siddikee, Md. Ashaduzzaman;Hamayun, Muhammad;Han, Gwang-Hyun;Sa, Tong-min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.522-527
    • /
    • 2010
  • Gibberellic acid ($CA_3$) is used in many industries and constitutes the primary gibberellins produced by fungi and bacteria. However, there is no information on $CA_3$ production by Methylobacterium oryzae CBMB20, a novel plant growth promoting bacterium. We investigated the favorable carbon (C) and nitrogen (N) sources and ratios and cultural conditions, such as incubation temperature, pH of the culture medium, and incubation period for the maximum production of $CA_3$ by Methylobacterium oryzae CBMB20. Maximum $CA_3$ production was observed in ammonium mineral salt (AMS) broth supplemented with Na-succinate and $NH_4Cl$ as C and N sources, respectively. The maximum $CA_3$ production was found at the C/N ratio of 5:0.4 g $L^{-1}$. The highest $CA_3$ production was obtained when the bacterial culture was incubated at $30^{\circ}C$ for 96 h at pH 7.

A Study on vertical mode system identification for a single tilt wing UAV (단일 틸트윙 방식 무인기의 수직모드 시스템 식별 기법 연구)

  • Seo, Ilwon;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.937-946
    • /
    • 2014
  • This paper presents system identification of a single tilt wing UAV. A Modified Equation Error Method(MEEM) and Extended Kalman Filter(EKF) are used for the identification of a single tilt wing UAV system in frequency-domain and time-domain, respectively. Simulated flight data is obtained from CNUX-3's vertical mode linear simulation with realistic sensor noise. System identification performance is analyzed with respect to a variety of design parameters of the MEEM. Also, High accuracy Fourier Transform(HFT) is applied to enhance the performance of MEEM. The results of the MEEM is compared with those of the EKF. Design parameters of the MEEM and initial conditions of the EKF are decided from optimization.

Development of DCOC Algorithm Considering the Variation of Effective Depth in the Optimum Design of PRC Continuous Beam (PRC연속보 최적설계에서 단면의 유효깊이 변화를 고려한 DCOC알고리즘 개발)

  • 조홍동;한상훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.281-291
    • /
    • 2002
  • This paper describes the minimum cost design of prestressed reinforced concrete (PRC) hem with rectangular section. The cost of construction as objective function which includes the costs of concrete, prestressing steel, non prestressing steel, and formwork is minimized. The design constraints include limits on the minimum deflection, flexural and shear strengths, in addition to ductility requirements, and upper-Lower bounds on design variables as stipulated by the specification. The optimization is carried out using the methods based on discretized continuum-type optimality criteria(DCOC). Based on Kuhn-Tucker necessary conditions, the optimality criteria are explicitly derived in terms of the design variables - effective depth, eccentricity of prestressing steel and non prestressing steel ratio. The prestressing profile is prescribed by parabolic functions. In this paper the effective depth is considered to be freely-varying and one uniform for the entire multispan beam respectively. Also the maximum eccentricity of prestressing force is considered in every span. In order to show the applicability and efficiency of the derived algorithm, several numerical examples of PRC continuous beams are solved.

Determination of Resistance Factors for Drilled Shaft Based on Load Test (현장타설말뚝의 주면지지력 저항계수 산정)

  • Kim, Seok-Jung;Jung, Sung-Jun;Kwon, Oh-Sung;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.427-434
    • /
    • 2010
  • Load Resistance Factor Design method is used increasingly in geotechnical design world widely and resistance factors for drilled shafts are suggested by AASHTO. However, these resistance factors are determined for intact rock conditions, by comparison most of bedrocks in Korea are weathered condition, so that applying the AASHTO resistance factors is not reasonable. Thus, this study suggests the proper resistance factors for design of drilled shaft in Korea. The 22 cases of pile load test data from 8 sites were chosen and reliability-based approach is used to analyze the data. Reliability analysis was performed by First Order Second Moment Method (FOSM) applying 4 bearing capacity equations. As a result, when the Factor of Safety(FOS) were selected as 3.0, the target reliability index($\beta_c$) were evaluated about 2.01~2.30. Resistance factors and load factors are determined from optimization based on above results. The resistance factors ranged between 0.48 and 0.56 and load factor for dead load and live load are evaluated approximately 1.25 and 1.75 respectively. However, when the target reliability are considered as 3.0, the resistance factors are evaluated as approximately 50% of results when the target reliability index were 2.0.

  • PDF

Optimization of Demucilage Process of Opuntia ficus-indica var. saboten Fruit using High Hydrostatic Pressure Enzyme Dissolution (고압 효소 액화 장치를 이용한 백년초 점질물 분해 공정의 최적화)

  • Im, Sungbin;Lee, Hyungjae;Shim, Jae-Yong;Kim, Tae-Rahk;Kim, Dae-Ok
    • KSBB Journal
    • /
    • v.30 no.2
    • /
    • pp.63-68
    • /
    • 2015
  • This study aimed to develop and optimize a demucilaging process of Opuntia ficus-indica var. saboten (OFI) fruit to increase its usability as functional food ingredient and food additive. Viscozyme and Novozym 33095 as multienzyme complex having a broad spectrum of carbohydrases and pectolytic enzymes, respectively, were used in enzymatic dissolution along with high hydrostatic pressure liquefaction. To optimize the liquefaction process using high hydrostatic pressure liquefying extractor, response surface methodology with 3-factor central composite design was employed with reaction factors such as temperatures (25, 32, 40, 48, and $55^{\circ}C$), pressures (20, 40, 60, 80, and 100 MPa), and times (15, 30, 45, 60, and 75 min). At optimum conditions ($25^{\circ}C$, 100 MPa, and 58.275 min) for high hydrostatic pressure liquefaction process, the processed OFI fruit juice was predicted to have viscosity at 2.917 poise, partly due to the release of free sugars such as fructose and glucose detected using HPLC-ELSA system. The results above suggests that the OFI fruit juice with decreased viscosity may be used for various manufacturing processes of food, beverage, ice cream, and cosmetics.