• 제목/요약/키워드: optimization approach

검색결과 2,364건 처리시간 0.025초

Topology optimization of variable thickness Reissner-Mindlin plate using multiple in-plane bi-directional functionally graded materials

  • Nam G. Luu;Thanh T. Banh;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • 제48권5호
    • /
    • pp.583-597
    • /
    • 2023
  • This paper introduces a novel approach to multi-material topology optimization (MTO) targeting in-plane bi-directional functionally graded (IBFG) non-uniform thickness Reissner-Mindlin plates, employing an alternative active phase approach. The mathematical formulation integrates a first shear deformation theory (FSDT) to address compliance minimization as the objective function. Through an alternating active-phase algorithm in conjunction with the block Gauss-Seidel method, the study transforms a multi-phase topology optimization challenge with multi-volume fraction constraints into multiple binary phase sub-problems, each with a single volume fraction constraint. The investigation focuses on IBFG materials that incorporate adequate local bulk and shear moduli to enhance the precision of material interactions. Furthermore, the well-established mixed interpolation of tensorial components 4-node elements (MITC4) is harnessed to tackle shear-locking issues inherent in thin plate models. The study meticulously presents detailed mathematical formulations for IBFG plates in the MTO framework, underscored by numerous numerical examples demonstrating the method's efficiency and reliability.

Design optimization of turning machine process

  • T. Jagan;S. Elizabeth Amudhini Stephen
    • Coupled systems mechanics
    • /
    • 제13권3호
    • /
    • pp.219-229
    • /
    • 2024
  • By introducing optimization algorithms into the machining process, product quality can be improved, time saved, and costs reduced. The cutting speed and feed can be handled by the turning machine. The approach of optimizing is used to manage pyrotechnics, Lawler's, greedy, bacterial colony, elephant herding, ant lion, spiral, auction, and pattern search for these ten odd ways. Ten artificial optimization methodologies were used to investigate the time and cost of a turning machine. It has been discovered how to create the optimal turning machine procedure. The best solution approach for the turning machine process problem is found, and the results are verified using ANSYS.

LINAC 뇌정의적 방사선 수술시 새로운 최적 선량분포계획 시스템의 개발 (New Techniques for Optimal Treatment Planning for LINAC-based Stereotactic Radiosurgery)

  • 서태석
    • Radiation Oncology Journal
    • /
    • 제10권1호
    • /
    • pp.95-100
    • /
    • 1992
  • LINAC 뇌정위적 방사선 수술은 multiple noncoplanar arc, 3 차원 선량 계산 및 많은 조사 변수들이 사용되기 때문에 간단한 경우에도 최적 선량분포를 얻기 위해서는 많은 시간이 요구된다. 본 논문에서는 실험적 방법과 분석적 방법을 통한 유용한 방법을 제시하기 위한 것으로서, 보다 자세한 방법 및 내용은 앞으로의 발표 논문에서 다루게 된다. 실험적 방법으로 2가지 방법에의하면, 첫번째 방법은 multiple isocenter를 이용하는 것이고, 두번째 방법은 beam's eye view와 field shaping을 이용한 conformal therapy이다. 분석적 방법은 최적 조사조건을 찾기 위하여 computer-aided design optimization 방법을 이용하는 것이다.

  • PDF

Approach toward footstep planning considering the walking period: Optimization-based fast footstep planning for humanoid robots

  • Lee, Woong-Ki;Kim, In-Seok;Hong, Young-Dae
    • ETRI Journal
    • /
    • 제40권4호
    • /
    • pp.471-482
    • /
    • 2018
  • This paper proposes the necessity of a walking period in footstep planning and details situations in which it should be considered. An optimization-based fast footstep planner that takes the walking period into consideration is also presented. This footstep planner comprises three stages. A binary search is first used to determine the walking period. The front stride, side stride, and walking direction are then determined using the modified rapidly-exploring random tree algorithm. Finally, particle swarm optimization (PSO) is performed to ensure feasibility without departing significantly from the results determined in the two stages. The parameters determined in the previous two stages are optimized together through the PSO. Fast footstep planning is essential for coping with dynamic obstacle environments; however, optimization techniques may require a large computation time. The two stages play an important role in limiting the search space in the PSO. This framework enables fast footstep planning without compromising on the benefits of a continuous optimization approach.

A Modified Particle Swarm Optimization for Optimal Power Flow

  • Kim, Jong-Yul;Lee, Hwa-Seok;Park, June-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권4호
    • /
    • pp.413-419
    • /
    • 2007
  • The optimal power flow (OPF) problem was introduced by Carpentier in 1962 as a network constrained economic dispatch problem. Since then, it has been intensively studied and widely used in power system operation and planning. In the past few decades, many stochastic optimization methods such as Genetic Algorithm (GA), Evolutionary Programming (EP), and Particle Swarm Optimization (PSO) have been applied to solve the OPF problem. In particular, PSO is a newly proposed population based stochastic optimization algorithm. The main idea behind it is based on the food-searching behavior of birds and fish. Compared with other stochastic optimization methods, PSO has comparable or even superior search performance for some hard optimization problems in real power systems. Nowadays, some modifications such as breeding and selection operators are considered to make the PSO superior and robust. In this paper, we propose the Modified PSO (MPSO), in which the mutation operator of GA is incorporated into the conventional PSO to improve the search performance. To verify the optimal solution searching ability, the proposed approach has been evaluated on an IEEE 3D-bus test system. The results showed that performance of the proposed approach is better than that of the standard PSO.

강성구속 조건을 갖는 구조물의 신뢰성기반 위상최적설계 (Reliability-Based Topology Optimization for Structures with Stiffness Constraints)

  • 김상락;박재용;이원구;유진식;한석영
    • 한국공작기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.77-82
    • /
    • 2008
  • This paper presents a Reliability-Based Topology Optimization(RBTO) using the Evolutionary Structural Optimization(ESO). An actual design involves some uncertain conditions such as material property, operational load and dimensional variation. The Deterministic Topology Optimization(DTO) is obtained without considering the uncertainties related to the uncertainty parameters. However, the RBTO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraints are satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability index approach(RIA) is adopted to evaluate the probabilistic constraints. In order to apply the ESO method to the RBTO, sensitivity number is defined as the change in the reliability index due to the removal of the ith element. Numerical examples are presented to compare the DTO with the RBTO.

An efficient procedure for lightweight optimal design of composite laminated beams

  • Ho-Huu, V.;Vo-Duy, T.;Duong-Gia, D.;Nguyen-Thoi, T.
    • Steel and Composite Structures
    • /
    • 제27권3호
    • /
    • pp.297-310
    • /
    • 2018
  • A simple and efficient numerical optimization approach for the lightweight optimal design of composite laminated beams is presented in this paper. The proposed procedure is a combination between the finite element method (FEM) and a global optimization algorithm developed recently, namely Jaya. In the present procedure, the advantages of FEM and Jaya are exploited, where FEM is used to analyze the behavior of beam, and Jaya is modified and applied to solve formed optimization problems. In the optimization problems, the objective aims to minimize the overall weight of beam; and fiber volume fractions, thicknesses and fiber orientation angles of layers are selected as design variables. The constraints include the restriction on the first fundamental frequency and the boundaries of design variables. Several numerical examples with different design scenarios are executed. The influence of the design variable types and the boundary conditions of beam on the optimal results is investigated. Moreover, the performance of Jaya is compared with that of the well-known methods, viz. differential evolution (DE), genetic algorithm (GA), and particle swarm optimization (PSO). The obtained results reveal that the proposed approach is efficient and provides better solutions than those acquired by the compared methods.

Optimization of Triple Response Systems by Using the Dual Response Approach and the Hooke-Jeeves Search Method

  • Fan, Shu-Kai S.;Huang, Chia-Fen;Chang, Ko-Wei;Chuang, Yu-Chiang
    • Industrial Engineering and Management Systems
    • /
    • 제9권1호
    • /
    • pp.10-19
    • /
    • 2010
  • This paper presents an extended computing procedure for the global optimization of the triple response system (TRS) where the response functions are nonconvex (nonconcave) quadratics and the input factors satisfy a radial region of interest. The TRS arising from response surface modeling can be approximated using a nonlinear mathematical program involving one primary (objective) function and two secondary (constraints) functions. An optimization algorithm named triple response surface algorithm (TRSALG) is proposed to determine the global optimum for the nondegenerate TRS. In TRSALG, the Lagrange multipliers of target (secondary) functions are computed by using the Hooke-Jeeves search method, and the Lagrange multiplier of the radial constraint is located by using the trust region (TR) method at the same time. To ensure global optimality that can be attained by TRSALG, included is the means for detecting the degenerate case. In the field of numerical optimization, as the family of TR approach always exhibits excellent mathematical properties during optimization steps, thus the proposed algorithm can guarantee the global optimal solution where the optimality conditions are satisfied for the nondegenerate TRS. The computing procedure is illustrated in terms of examples found in the quality literature where the comparison results with a gradient-based method are used to calibrate TRSALG.

Multi-objective Fuzzy-optimization of Crowbar Resistances for the Low-Voltage Ride-through of Doubly Fed Induction Wind Turbine Generation Systems

  • Zhang, Wenjuan;Ma, Haomiao;Zhang, Junli;Chen, Lingling;Qu, Yang
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.1119-1130
    • /
    • 2015
  • This study investigates the multi-objective fuzzy optimization of crowbar resistance for the doubly fed induction generator (DFIG) low-voltage ride-through (LVRT). By integrating the crowbar resistance of the crowbar circuit as a decision variable, a multi-objective model for crowbar resistance value optimization has been established to minimize rotor overcurrent and to simultaneously reduce the DFIG reactive power absorbed from the grid during the process of LVRT. A multi-objective genetic algorithm (MOGA) is applied to solve this optimization problem. In the proposed GA, the value of the crowbar resistance is represented by floating-point numbers in the GA population. The MOGA emphasizes the non-dominated solutions and simultaneously maintains diversity in the non-dominated solutions. A fuzzy-set-theory-based is employed to obtain the best solution. The proposed approach has been evaluated on a 3 MW DFIG LVRT. Simulation results show the effectiveness of the proposed approach for solving the crowbar resistance multi-objective optimization problem in the DFIG LVRT.

Optimal design of homogeneous earth dams by particle swarm optimization incorporating support vector machine approach

  • Mirzaei, Zeinab;Akbarpour, Abolfazl;Khatibinia, Mohsen;Siuki, Abbas Khashei
    • Geomechanics and Engineering
    • /
    • 제9권6호
    • /
    • pp.709-727
    • /
    • 2015
  • The main aim of this study is to introduce optimal design of homogeneous earth dams with oblique and horizontal drains based on particle swarm optimization (PSO) incorporating weighted least squares support vector machine (WLS-SVM). To achieve this purpose, the upstream and downstream slopes of earth dam, the length of oblique and horizontal drains and angle among the drains are considered as the design variables in the optimization problem of homogeneous earth dams. Furthermore, the seepage through dam body and the weight of dam as objective functions are minimized in the optimization process simultaneously. In the optimization procedure, the stability coefficient of the upstream and downstream slopes and the seepage through dam body as the hydraulic responses of homogeneous earth dam are required. Hence, the hydraulic responses are predicted using WLS-SVM approach. The optimal results of illustrative examples demonstrate the efficiency and computational advantages of PSO with WLS-SVM in the optimal design of homogeneous earth dams with drains.