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Abstract. This paper presents an extended computing procedure for the global optimization of the triple 
response system (TRS) where the response functions are nonconvex (nonconcave) quadratics and the input 
factors satisfy a radial region of interest. The TRS arising from response surface modeling can be approximated 
using a nonlinear mathematical program involving one primary (objective) function and two secondary 
(constraints) functions. An optimization algorithm named triple response surface algorithm (TRSALG) is 
proposed to determine the global optimum for the nondegenerate TRS. In TRSALG, the Lagrange multipliers of 
target (secondary) functions are computed by using the Hooke-Jeeves search method, and the Lagrange 
multiplier of the radial constraint is located by using the trust region (TR) method at the same time. To ensure 
global optimality that can be attained by TRSALG, included is the means for detecting the degenerate case. In 
the field of numerical optimization, as the family of TR approach always exhibits excellent mathematical 
properties during optimization steps, thus the proposed algorithm can guarantee the global optimal solution 
where the optimality conditions are satisfied for the nondegenerate TRS. The computing procedure is illustrated 
in terms of examples found in the quality literature where the comparison results with a gradient-based method 
are used to calibrate TRSALG. 

 
Keywords: Triple Response System (TRS), Global Optimization, Nonlinear Programming (NLP), Trust Region 

(TR); Hooke-Jeeves’ Search Method 
 
 

1.  INTRODUCTION 

The advent of the dual response approach proposed 
by Myers and Carter (1973) has sparked tremendous in-

terest in the application and analysis of multiple re-
sponse optimization problems. In their approach, the 
objective is to optimize a “primary” second-order poly-
nomial response function subject to some equality con-
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straint on a quadratic “secondary” response function. 
Many results using the dual response approach have 
been reported over the last three decades, inspiring re-
searchers to exploit its applicability in different fields. A 
common instance of a dual response system is in the 
area of robust parameter design. Genichi Taguchi (Ta-
guchi and Wu, 1980; Taguchi, 1986, 1987) introduced 
his approach for reducing variation and improving prod-
uct (or process) quality characteristics simultaneously. 
After the concept has been pointed out by applying the 
optimization approach to quality control (QC), Vining 
and Myers (1990) integrate the Taguchi and response 
surface methods into the dual response approach for 
achieving some of the goals of Taguchi’s philosophy. 
From that time on, the dual response system (DRS) has 
been suggested as one of the primary means for allow-
ing the adoption of Taguchi’s philosophy while provid-
ing a more rigorous approach to the analysis. Further-
more, some modifications based on the dual response 
approach utilize the generalized nonlinear programming 
algorithms for the purpose of improving the optimiza-
tion performance (see Del Castillo and Montgomery, 
1993; Lin and Tu, 1995). However, these methods may 
settle on local optima and thus the global optimum can 
only be achieved by conducting some ad hoc analyses.   

To achieve global optimality that the above-men-
tioned methods can not achieve, Semple (1997) pro-
posed an optimization algorithm of DRS for the nonde-
generate case, thus termed DRSALG. The algorithm 
guarantees the global optimal solution by using the 
trust-region-based approach. For the degenerate problem 
in DRS, Del Castillo, Fan, and Semple (1999) designed 
a modi-fied trust-region algorithm that is an extension of 
Semple’s algorithm for the generalized DRS. The new 
algorithm dubbed DR2 can either solve the degenerate 
or nondegenerate problems for DRS. To date, it has be-
come manifest that the development of the optimization 
methods and practical applications for DRS has been 
widely recognized. However, the DRS represents merely 
one of the practical instances that could realistically 
occur in practice. Surprisingly few studies have been 
devoted to the case dealing with more than two responses 
within the context of the dual response approach. To 
further enhance the dual response approach’s practical-
ity, a triple response system (TRS) subject to the radial 
inequality constraint is studied in this paper. Thus, the 
algorithm to be presented in this paper is termed the 
triple response surface algorithm (TRSALG), where the 
Hooke-Jeeves (HJ) search method (1961) is used to lo-
cate suitable Lagrange multipliers. The formal definition 
of TRS will be given in the next section.    

2.  TRIPLE RESPONSE SYSTEM 

The objective of this paper is to develop an algo-
rithm based on DRSALG to solve TRS inside the search 

of a radial bound. TRS arises in a variety of modeling 
situations where three competing objectives must be 
managed at the same time. All the objectives can be 
approximated by using second-order polynomials called 
quadratic functions. The goal of TRS is to minimize one 
of the functions (the primary response) while maintain-
ing two desirable conditions on the remaining target 
functions (the secondary responses), as defined by 
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where B , 1C and 2C
×∈ k kR are symmetric matrices that 
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where 1, 2.i =  The vectors 1b, d  and 2d  contain the 
parameter estimates of linear terms, and 1

0 0,b d  and 2
0d  

are the scalars which estimate the intercepts. The vector 
1×∈ kx R  represents a set of factors which are under the 

control of the process engineer, and 1 2,T T  (the target 
values) and 0>r  (the radius of the norm constraint) are 
given constants. In problem (1), the inequality constraint 
confines the search for the optimal operating conditions 
where the designed experiment takes place. Hence, there 
have several logical selections for r  if a composite 
design (CCD) is chosen to fit TRS.  

In DRS, Myers and Carter (1973) have shown that, 
if the matrix ( μ θ− +B C I ) is positive definite (p.d.), 
then the stationary point x  is given by 

1( ) ( ),
2

μ θ μ− + = −B C I x d b  

where the Lagrange multipliers ,μ θ  additionally sat-
isfy 0θ ≥  and 0θ =  whenever 

T 2.r≤x x  However, in 
this paper DRS is extended to TRS by considering the 
following two equality constraints:  

T T
1 1 1 1( ) = + =g Tx x C x d x  

T T
2 2 2 2( ) = + =g Tx x C x d x . 

From the mathematical program in (1), the parametric 
trust region problem is constructed that formalizes the 
parametric optimization to make TRS similar to a trust 
region problem 1 2( ( , ))μ μD  as expressed by   
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where 1, 2=i  and then the stationary point x  of TRS is 
generated via  

1 1 2 2 1 1 2 2

1( ) ( )
2

μ μ θ μ μ− − + = + −B C C I x d d b     (2) 

It is noteworthy that both the stationary point x  
and its associated response values of 1g  and 2g  are 
viewed as functions of 1μ  and 2.μ  Thus, there are three 
unknown parameters to solve, the Lagrange multiplier, 

1 2,μ μ  and ,θ  for determining the stationary point x . 
The following section presents the computation of the 
Lagrange multipliers in the nondegenerate case of TRS.  

2.1 Nondegenerate TRS 

Problem (1) is now reduced to the search that will 
be conducted within the three-dimensional parameter 
space 1 2( , , ).μ μ θ  It can be considered an extension of 
DRS suggested by Myers and Carte (1973) and there-
fore the parameter space is defined by:  

{ }1 2 1 1 2 2( , , ) : ( ) is p.d., 0.μ μ θ μ μ θ θ= − − + ≥Γ B C C I  

Note that a parameter search performed in this man-
ner is only successful if the global optimum is a station-
ary solution achieved for some 1 2( , , )μ μ θ ∈Γ . Theorem 
2.1 that follows shows the global optimality for the mul-
tiple response system (MRS). In instances where this is 
not the case, the search will get stuck (at what is called a 
“gateway” point on the boundary of Γ ). That is, the 
search cannot find a suitable 1 2( , , )μ μ θ ∈Γ  to make the 
Hessian matrix 1 1 2 2( )μ μ θ− − +B C C I  p.d. When this si-
tuation occurs, it is said to be a degenerate case. To dis-
cuss the nondegeneracy of TRS, consider the matrix 

1 1 2 2( )μ μ θ− − +B C C I  for fixed values of 1μ  and 2μ , 
and consider its ordered eigenvalues { }1 2 .kλ λ λ≤ ≤ ≤  
It is reasonable to treat 1μ  and 2μ  (associated with 
both secondary responses) as constants. The reason is 
that the target values ( 1T , 2T ) of constraint responses are 
given constants by the process engineer in advance. If 
there exists a global solution to TRS, then ( 1T , 2T ) is 
mapped to a unique set 1 2( , )μ μ . For 1μ  and 2μ , let 
the eigenspace corresponding to the smallest eigenvalue 
be denoted by 1 2

1

( , )μ μ
λE . The non-degeneracy can be de-

fined through 1 2( , )μ μ
λ =

1
E { }1 1 2 2 1: ( ) .μ μ λ− − =q B C C q q  See 

Definition 2.1. To illustrate, the degenerate situation 
will be pictorially shown in the following section. 

 
Theorem 2.1 Let iB, C  be symmetric matrices, possi-

bly indefinite. Let 1x  be a solution to 
multiple response system (MRS) with (B  

)μ θ− +∑ i ii
C I  p.d. and 0θ ≥ . Then, for 

MRS, with 1 1
2 = Tr x x  and 1 1= +T T

i i iT x C x d  

1 1 1 1,= +T T
i i iT x C x d x x  is the unique global 

minimum. For any other feasible point 2 ,x  
the inequality holds: 

1 2 1 2 1 2( ) ( ) ( ) ( )( ).i i
T

i
f f μ θ− ≤ − − − + −∑x x x x B C I x x  

If 0θ = , 1x  then is the unique global minimum to the 
MRS inside the radial bound.  

 
Definition 2.1 Problem (1) is said to be locally nonde-

generate on 1 2( , )μ μ ∈ R  provided that 
for 1μ  and 2μ  the vector 1 1 2 2( )μ μ+ −d d b  
is not perpendicular to 1 2( , )μ μ

λ1
E . Problem 

(1) is said to be degenerate on 1 2( , )μ μ  
1 2( , ) Rμ μ ∈  otherwise. 

3.  SOLUTION PROCEDURE OF NON-
DEGENRATE TRS 

To solve the nondegenerate case of TRS, an ex-
tended dual response approach is proposed in this paper. 
Semple’s DRSALG (1997) is a two-stage algorithm for 
optimizing the nondegenerate DRS. First, the root-fin-
ding method such as regula falsi (RF) or modified regula 
falsi (MRF) is used to determine the Lagrange multiplier 
of the equality constraint, and then a trust region method 
is used to locate the Lagrange multiplier of the radial 
constraint. Following DRSALG, TRSALG is developed 
for TRS. In particular, a multidimensional search me-
thod without using derivatives, the Hooke-Jeeves method 
is used to simultaneously seek 1μ  and 2μ  that could sa-
tisfy both secondary response constraints. Afterwards, 
the trust region method is used to calculate the optimal 
θ  at fixed 1μ  and 2μ . If the solution is found with 1( ,μ  

2 , ) ,μ θ ∈Γ  then it can be guaranteed a unique global so-
lution to TRS. 

The Hooke-Jeeves’ algorithm (1961) is a well-known 
pattern search procedure that is widely used to optimize 
nonlinear functions without using derivatives. The algo-
rithm performs repeatedly two types of search routines: 
an exploratory cyclic search and a pattern search. The 
Hooke-Jeeves’ algorithm requires deterministic evalua-
tion of the function being optimized. If the minimum of 
the objective along any line is unique and the conver-
gence sequence is contained in a compact set, then the 
pattern search direction is descent iteration from itera-
tion, thus converging to a stationary point (zero gradi-
ent). This method is extremely effective at solving the 
minimization problem that has only one minimizer along 
the each coordinate axis instead of solving the problem 
with multiple optimal solutions. Therefore, the Hooke 
and Jeeves’ method can solve effectively the unique so-
lution of the error sums-of-squares function transformed 
from the TRS problem, as will be shown shortly. The 
details regarding the proposed algorithm TRSALG are 
described in the next two subsections: locating Lagrange 
multiplier θ  and computation for 1μ  and 2.μ   
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3.1 Locating θ  

For the aforementioned parametric trust region pro-
blem 1 2( , )μ μD  of TRS, the key process is to compute 
the Lagrange multiplier θ  at fixed 1μ  and 2μ  such that 
the resulting Hessian matrix is p.d. The main idea of the 
trust region method is to update the interval [ , ]L Uθ θ  of 
θ  which contains the desired solution *θ  at fixed 1μ  
and 2 ,μ  and locate the solution iff 1 1 2 2( μ μ− − +B C C  

)θ I  is p.d. on the sphere of radial r  or 0θ =  inside the 
radial bound. The following mathematical formulation is 
referred to Semple’s DRS approach. The technique for 
solving the parametric trust region problem in the region 

1( , ) [0, )λ− ∞ ∩ ∞  had been investigated extensively in 
abundant trust region literatures. Note that a solution is 
required for 1( , ) [0, )λ− ∞ ∩ ∞  and the Newton’s method 
may diverge, so the safeguarding scheme is necessary 
when the iteration falls outside the interval 1( , ).λ− ∞  

What follows is primarily concerned with the solu-
tion to the parametric secular equation (if exits):  

1 2 1 2 1 2
2 21( ) ( , , ) ( , , ) ( , , )

4μφ θ μ μ θ μ μ θ μ μ θ−= ∇ ∇ =TD H D r  (3) 

where 

1 2 1 1 2 2

1 2 1 1 2 2

( , ) ( ),
( , , ) ,

μ μ μ μ
μ μ θ μ μ θ

∇ = + −
= − − +

D
H

d d b
B C C I

 

1 2( , , )μ μ θ ∈Γ  and 1μ , 2μ  is considered fixed parameters. 
Then, applying the Schur decomposition to equation (3) 
yields the rational form 
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γφ θ
θ λ=

=
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i

n

i
   (4) 

where γ i  is the -thi  projection component of .γ  See the 
details of the above transformation in Semple (1997). In 
the nondegenerate case ( 1 0γ ≠ ), the problem (3) has a 
unique solution for 0>r  that can be found by either 
solving  

2
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1
( )    on ( , ) [0, ),

( )μ
γφ θ λ
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= = − ∞ ∩ ∞
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i

n

i
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or setting 0θ =  on the case where 2( )μφ θ < r  on 1( ,λ−  
) [0, )∞ ∩ ∞ . By contrast, differentiating the secular func-

tion as it appears in (3) with respect to θ  yields 
2( ) || || ,μφ θ = z  ( ) 2 T

μφ θ′ = − w z ,  and 
2( ) 6 || ||μφ θ′′ = w  (Sem-

ple, 1997 and Fan, 2003). 
|| ||Tx x  in equation (3) is monotone decreasing and 

convex on 1( , )θ λ∈ − ∞  (Fan, 2003). Newton’s iteration 
to the reciprocal transformation of equation (3), termed 
Reinsch’s equation, can be formed:  

2 2 4 2
1 ( || || || || ) 2 .T

k k r rθ θ+ = − −z z z  

According to the safeguard mechanism in the trust 
region method, the lower bound for 1λ−  is thus com-

puted as ( )θ − T T
k w z w w . Note that when θk  is less than 

the lower bound for 1λ− , then the θk  is safeguarded by 
the lower bound of θ 5 to avoid the current solution 
overshooting the working interval (Fan, 2003). For the 
detail of the solution procedure of the trust region me-
thod, see Semple (1997) and Fan (2003). 

3.2 Construction of the initial intervals of 1 2( , )μ μ  

The results of section 3.1 can now be utilized to 
construct the initial intervals for 1μ  and 2.μ  Following 
Semple’s DRSALG (1997), the initial intervals are es-
tablished by means of solving the following five trust 
region subproblems:  
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Let the optimal solutions to (i-v) be denoted by 
min
fx , 

1
min
gx , 1

max
gx , 2

min
gx  and 2

max
gx , respectively. In TRS, 

the parametric trust region problem is defined as follows:  

1 2 1 1 2 2

2

( , )  Min ( ) ( ) ( )

                  s.t. .

μ μ μ μ− −

≤T

D f g g
r

x x x
x x

 

The first step is to solve the three trust region prob-
lems (i-iii) when setting 2 0.μ =  Then, the parametric 
trust region problem is reduced to 

1 2 1 1

2

( , )  Min  ( ) ( )

                 s.t.   .

μ μ μ−

≤T

D f g

r

x x
x x

 

Note that (i) is 1 2( , )D μ μ  with 1 2 0μ μ= = ; (ii) is D  
1 2( , )μ μ with 1μ = −∞  at 2 0μ = ; (iii) is 1 2( , )μ μD with 

1μ = ∞  at 2 0.μ =  In DRSALG (1997), an assumption 
that 1T  satisfies 

1 1
1 min 1 1 max( ) ( )< <g gg T gx x  is used. If 1T  

equals 1
1 min( )gg x  or 1

1 max( )gg x , the problem is solved by 
(ii) or (iii), respectively. If 1T  is outside this range, the 
problem is infeasible. After computing the constant 

1 min( )fg x , one of three cases occurs: (a) min1 1( ) =fg Tx ; (b) 
min1 1( ) <fg Tx ; (c) min1 1( ) >fg Tx . 

 
Case (a): min1 1( ) =fg Tx  

In this case, the solution min
fx  is just the feasible 

solution of TRS. Furthermore, the solution is the abso-
lute optimal solution for TRS when min2 ( )fg x  also equ-
als to 2T . 
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Case (b): min1 1( ) <fg Tx  
In this case, the initial interval for 1μ  is constructed 

by  
* 1 1

1 1 max min max 11 10   ( ) ( ) / ( ( ) )μ μ μ= ≤ ≤ − − ≡L g f g Uf f g Tx x x  
 

Case (c): min1 1( ) >fg Tx  
In this case, the initial interval for 1μ  is constructed 

by  
1 1 *

1 min min min 1 11 1( ) ( ) / ( ( ))   0μ μ μ≡ − − ≤ ≤ =L f g g Uf f T gx x x  

For cases (b-c), see the proof in Semple (1997).  
After computing the interval of 1μ , the second step 

is to construct the initial interval for 2μ  in the feasible 
interval of 1μ . The intermediate 1μ ′  chosen within the 
interval of 1μ  is used to check if the interval of 2μ  con-
tains 2.T  The problem is infeasible if the constructed 
interval of 2μ  does not contain 2T . Based on a suitable 

1μ ′  in the interval of 1μ , the trust region problem in the 
following is solved  

1 2 1 1 2 2
2

( , )  Min ( ) ( ) ( )

                  s.t. .

μ μ μ μ′− −

≤T

D f g g

r

x x x
x x

 

In a similar manner, the trust region problems (iv-v) 
are solved to construct the initial interval of 2μ  for a 
suitable 1 .μ ′  In the corresponding three cases, 1μ  is re-
placed by 

1
min2 ,μ gx  is replaced by 2

min
gx , and 1

max
gx  is re-

placed by 
2

max
gx . Upon completing the construction of the 

initial intervals of 1μ  and 2 ,μ  the optimal Lagrange 
multipliers 

* *
1 2( , )μ μ  are bracketed. However, the order of 

constructing bounds for 1μ  or 2μ  is exchangeable if the 
infeasibility occurs in any order. If it is the case, then the 
step one is to construct the initial interval of 2μ  at 

1 0μ =  instead to solve the trust region problems of (i), 
(iv) and (v). Then, the same procedure is followed by a 
reverse order.  

3.3 Update of 1μ  and 2μ  

The HJ search method (1961) is used to find the 
suitable value of 1μ  and 2μ  for which the equality con-
straints in (1) are satisfied. The HJ algorithm starts with 
an exploratory move to determine an appropriate direc-
tion of search (pattern) by considering one variable at a 
time along the individual coordinate directions. Follow-
ing the exploratory search, a series of pattern moves are 
made to accelerate the search in the direction deter-
mined in the exploratory search. Exploratory searches 
and pattern moves are repeated until a termination crite-
rion is met. For more details on HJ algorithm, see Ba-
zaraa, Sherali, and Shetty (1993). Due to nice conver-
gence properties of Hooke and Jeeves’ search method 
(see Bazaraa et al., 1993), the search method can guar-
antee that the found solutions of 1μ  and 2μ  are optimal 
if the generated sequence is closed and bounded. Denote 
that the two variables to be sought be a vector 1( ,μ=μ  

2 )μ  in two-dimensional parameter space, 2
1 2( , ) .μ μ ∈R  

The objective function in updating 1 2( , )μ μ  is defined 
as  

2
2

1 2
1

   ( ) ( ( , ))k i k k k i
i

Minimize h g Tμ μ
=

= −∑μ x , 

where ig  is the secondary response in (1) for 1, 2,i =  
and kx  is the stationary point at the fixed values of 1μ k  
and 2μ k  at the -thk  iteration. The objective is to mini-
mize the squared error between secondary responses and 
their targets. This type of search is halted if a solution 

2
1 2( , )μ μ ∈R  is found with 6( ) 10ε −< =kh μ  (where ε = 

tolerance for convergence). The unique, absolute mini-
mum of ( )kh μ  is zero and the search space is also bo-
unded by the constructed initial intervals. Hence, the glo-
bal convergence property of HJ search in such a circum-
stance can be guaranteed if TRS is nondegenerate.  

3.4 TRSALG 

The TRSALG is performed by two steps, which 
computes the optimal solution for TRS that is locally 
nondegenerate in 1 2( , ).T T  The main idea behind TRSA 
LG have been introduced in Sections 3.2-3.3: first, fix 

1μ  and 2μ  at suitable values and compute the value of 
θ  at the same time such that the resulting stationary 
point makes the Hessian matrix p.d. The Figure 1 shows 
the formal solution procedure of the two-stage paramet-
ric approach for optimizing TRS. 

4.  AN EXAMPLE TAKEN FROM RESPONSE 
SURFACE METHODOLOGY LITERATURE 

Two examples taken from the literature will be pre-
sented in this section to illustrate TRSALG. The gener-
alized reduced gradient (GRG) results are also listed for 
the calibration purpose. The GRG algorithm has been 
proved one of the most robust and efficient NLP meth-
ods available to solve small to moderate size problems 
(Lasdon et al., 1978). Many GRG codes are available. 
The optimizer termed “SOLVER” embedded into the 
Microsoft EXCEL is the GRG2 code from Lasdon et al. 
(1974) and Lasdon et al. (1978), and it is used to cali-
brate the TRSALG results in this paper. 

4.1 Example 1 

This example is from Shah, Montgomery and Car-
lyle (2004). It is original from Tseo et al. (1983). It in-
vestigated the effects of washing temperature ( 1x ), 
washing time ( 2x ), and washing ratio ( 3x ) on the 
springiness ( 1y ), thiobarbituric acid number ( 2y ), per-
cent cooking loss ( 3y ), and whiteness index ( 4y ) for 
minced mullet flesh. The experimental design is a cen-
tral composite design (CCD) in 3=k  design variables 
and the experimenter observed 4 responses. For the pur-
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pose of the illustration of TRS, the thiobarbituric acid 
number ( 2y ) will be minimized that is called the pri-
mary response, and the percent cooking loss ( 3y ) and 
whiteness index ( 4y ) will be wished to be on target that 
are called the secondary responses.  

Assume that the target value of 4y  is on 1 40=T  
and the target value of 3y  is on 2 25.T =  Since a CCD is 
used in the designed experiment, the radius of the ine-
quality constraint is set to 3.r =  The required matrices, 
vectors and constants, taken directly from the regression 
analysis, are 

1

2

8.1529 1.29 0.29
0.426 0.2062 ,

. 0.9793

3.1519 0.0444 0.2381
0.6435 0.1132 ,

. 0.5728

3.4525 0.9 1.05
0.8008 0.2875 ,

. 1.5786
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Figure 1. The Formal Procedure of  TRSALG. 
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1 2

1 2
0 0 0

5.6151 2.4364 0.7442
0.218 ,  0.6307 ,  0.012 ,

1.1808 0.2692 1.0711

21.2616,  50.7102,  17.9326.

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− = = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= =b d d

b = d d

=

 

By solving five trust region problems as mentioned in 
Section 3.2, the initial intervals of Lagrange multipliers 
are found 1 [ 2.59727, 0]μ ∈ −  and 2 [0, 5.87565].μ ∈  In or-
der to clearly pinpoint the target location on the secon-
dary response surface, the optimal response surface is 
plotted over infinitesimal grid points inside 1 [ 5,0]μ ∈ −  
and 2 [0, 5]μ ∈ . The three-dimensional plots of 3y  and 

4y  are shown in Figures 2~3, respectively. Table 1 shows 
the computation results for the Lagrange multipliers and 
optimal solutions for the TRS problem by using GRG2 
and TRSALG. Note that the sign of the Lagrange multi-
plier θ  in GRG2 is opposite from TRS ALG since the 
Hessian matrix in GRG2 is 1 1( μ− −B C 2 2 )μ θ−C I . Ta-
ble 2 shows the squared errors by using GRG2 and 
TRSALG. From a practical point of view, both algo-
rithms reach the same optimal solution. 

Figure 4 exhibits the contour plot of ( )h μ  in the 
search space by solving the trust region problems. The 
HJ search needs five complete iterations for convergence. 
As can be seen from the figure, every search direction is 
descent since the minimum of the objective along any 
line is unique, leading to the ultimate convergence to the 
minimum point with zero objective value. The summary 
of the computation results is given in Table 3. 

 

1 ( ( ))g μx

2μ 1μ
 

Figure 2.  Plot of 3y  and Target ( 1 40=T ) Response with 
respect to 1 2( , )μ μ in Example 1. 

2( ( ))g μx

2μ 1μ  
Figure 3.  Plot of 4y  and Target ( 1 25=T ) Response w.r.t 

1 2( , )μ μ  in Example 1. 
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Figure 4. The Search Route by Using Hooke and Jeeves’ 

Method for Example 1. 

4.2 Example 2 

This example is from Fan (1996). It is original from 
Vining and Myers (1990). The purpose of the experi-
ment was to analyze the effect of the speed ( 1x ), pres-
sure ( 2x ), and distance ( 3x ) factors upon a printing ma-
chine’s ability to apply coloring inks onto package la-
bels. In Fan (1996) the primary response of this example 
is to be minimized subject to two linear target functions 
as follows: 

1=k2=k

3=k
4=k

5=k

6=k

Table 1. Solution of GRG2 and TRSALG. 

Algorithm *
1 2( , )μ μ=μ  

*( )θ μ  Solution 
*x  

GRG2 (-1.38169, 3.96207e-001) -8.42257e-001 (-1.56711, 6.91265e-001, -2.57538e-001) 
TRSALG (-1.38169, 3.96207e-001) 8.42258e-001 (-1.56711, 6.91265e-001, -2.57537e-001) 
 

Table 2. Squared Errors returned by Using GRG2 and TRSALG. 

Algorithm *( )h μ  *( )f x  
GRG2 6.17389e-014 2.98038e+001 

TRSALG 2.32356e-012 2.98038e+001 
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To lend itself to TRS, the linear constraints are squa-
red to quadratic constraints as  

2 2
1 1 2 3

2 2
2 1 2 3

 ( ) (3 5 4 ) 1 ,

 ( ) (2 ) 2 .

= − − =

= + + =

g x x x

g x x x

x
x

 

The resulting parameters are 

1

2 1 2

4.2 3.85 2.55 9 15 12
1.3 7.05 ,  25 20 ,  

. 16.8 . 16

4 2 2 11.5 6 8
1 1 , 15.3 ,  10 ,  4 ,

. 1 29.3 8 4
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sym sym

sym

B = C

C b = d d

 

with 1 2
0 0 034.9, 0, 0.= =b d d=  Note that the linear con-

straints are transformed into quadratic function, which is 
intentionally created for the evaluation purpose. The 
results from TRSALG and the GRG2 for this example 
are shown in Table 4. The Lagrange multipliers obtained 

by using both algorithms are shown in Table 5. Here, 
the different radial bounds are tried by 1.0, 2.0 and 3.0. 
When 

2 1.0=r  is solved, GRG2 finds the result of =Γ  
1 2( , , )μ μ θ  that dose not make the Hessian matrix 1( μ−B  

1 2 2 )μ θ− −C C I  p.d. Notice that the Lagrange multiplier 
θ  is negative in the GRG2 results. This is called the 
degenerate case where TRSALG cannot find the unique 
global solution. In the mean time, TRSALG can detect 
the situation of degeneracy (or called gateway point) at 

( 1.73124e-001, 6.34584e-001, 2.15876),= − −Γ  which makes 
the vector 1 1 2 2( )μ μ+ −d d b  is orthogonal to 1 2( , )μ μ

λ1
E . De-

generacy can be pictured from Figures 5~6. Observe 
that the surface is plotted in condition that the Hessian 
matrix 1 1 2 2( )μ μ θ− − +B C C I  is p.d. at each grid but is 
not continuous at some target levels of the secondary 
responses. As 

2 2.0, 3.0,r =  TRSALG can find a global 
optimal solution that makes the Hessian matrix 1( μ−B  

1 2 2 )μ θ− +C C I  is p.d. (where the Lagrange multiplier 
θ  is positive). The GRG2 results are now confirmed as 
the global optimal solutions as well. Figures 7~8 shows 
the response surface plot of the secondary responses and 
Figure 9 shows the search contour plot of ( )h μ  while 
solving the TRS problem with radial bound 

2 3.0.r =  
The HJ search needs 4 iterations for convergence and 
each pattern search is in a descent direction toward the 
zero-gradient stationary point.  

Table 3. Summary of Computation Results of TRSALG for Example 1. 

Iteration 
k  

kμ  
( )kh μ  1 2( ) ( , )θ θ μ μ=μ  Iteration 

of TR 
Solution 

kx  

1 (0.00000, 0.00000) 
1.54363e+002 8.42258e-001 5 (-1.56711, 6.91266e-001, -2.57537e-001)

2 (-1.91448, 7.40264e-002) 
2.97599e+000 1.64734 5 (-1.65022, 5.12205e-001, 1.20031e-001)

3 (-1.80068, 1.44772e-001) 
2.40709e+000 1.43995 5 (-1.64377, 5.41440e-001, 6.97651e-002)

4 (-1.37520, 3.99839e-001) 
1.77073e-003 8.36147e-001 5 (-1.56472, 6.93931e-001, -2.64759e-001)

5 (-1.38189, 3.96094e-001) 
1.69826e-006 8.42451e-001 5 (-1.56718, 6.91182e-001, -2.57313e-001)

6 (-1.38169, 3.96207e-001) 
2.32356e-012 8.42258e-001 5 (-1.56711, 6.91266e-001, -2.57537e-001)

Table 4. Computation Results of TRSALG and GRG2 for Example 2. 

TRSALG GRG2 
2r  

Solution *x  *( )f x  Solution *x  *( )f x  

1.0 - - (-2.89742e-001,5.40759e-001, 
-7.89702e-001) 2.11709e+001 

2.0 (-2.64256e-001, 8.20939e-001, 
-1.12082e-000) 1.90818e+001 (-2.64272e-001, 8.20933e-001, 

-1.12082) 1.90817e+001 

3.0 (-2.45136e-001, 1.03148e-000, 
-1.36965e-000) 1.80992e+001 (-2.45131e-001, 1.03149e-000, 

-1.36965e-000) 1.80992e+001 
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1( ( ))g x μ

1μ 2μ
 

Figure 5. Plot of 1( ( ))g x μ  and Target ( 1 1=T ) with 
2 1.0=r  for Example 2. 

 

2( ( ))g x μ

1μ
2μ  

Figure 6. Plot of 2 ( ( ))g x μ  and Target ( 2 4=T ) with 
2 1.0=r  for Example 2. 
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Figure 7. Plot of 1( ( ))g x μ and Target ( 1 1=T ) Response 

with 2 3.0=r  for Example 2. 

1( ( ))g μx
2( ( ))g μx

2μ 1μ

 
Figure 8. Plot of 2 ( ( ))g x μ  and Target ( 2 4=T ) with 

2 3.0=r  for Example 2. 
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Figure 9. The Search Route by Using Hooke and Jeeves’ 

method for Example 2. 

5. CONCLUSIONS 

This paper discusses the TRS problem that is ex-
tended from DRS. A new computing algorithm, termed 
TRSALG, for achieving the global optimal solution to 
the nondegenerate TRS is proposed. TRSALG is devel-
oped based on two types of nonlinear programming 
(NLP) methods, the trust region and Hooke-Jeeves’ pat-
tern search methods. TRS is shown to be solvable in 
terms of the second-order conditions for global optimal-
ity in Theorem 3.1, under the nondegeneracy assump-

1=k

2=k
3=k 4=k

5=k

Table 5. The Lagrange Multipliers returned by Using TRSALG and GRG2 for Example 2. 

TRSALG GRG2 2r  
1 2( , , )μ μ θ=Γ  1 2( , , )μ μ θ=Γ  

1.0 - (1.16024e-002, -6.61993e-001, -3.12585e-000) 
2.0 (-3.79730e-001, -5.24403e-001, 1.38195e-000) (-3.79729e-001, -5.24374e-001, -1.38194e-000) 
3.0 (-6.66710e-001, -3.90434e-001, 6.59930e-001) (-6.66709e-001, -3.90444e-001, -6.59942e-001) 
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tion defined in Definition 3.1. Therefore, TRSALG is 
only successful if the second-order KKT conditions hold. 
The first step of TRSALG is to use the HJ search for 
searching appropriate Lagrange multipliers of the equal-
ity constraints and then use the trust region method to 
locate the Lagrange multiplier of the radial inequality 
constraint. As long as TRSALG converges, the solution 
returned must be a global optimum; otherwise, TRS is 
detected as a degenerate case. The proposed algorithm is 
illustrated in terms of examples found in the quality 
literature where the comparison results with a gradient-
based method are used to calibrate TRSALG. 
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