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A Modified Particle Swarm Optimization for Optimal Power Flow

Jong-Yul Kim', Hwa-Seok Lee* and June-Ho Park**

Abstract — The optimal power flow (OPF) problem was introduced by Carpentier in 1962 as a
network constrained economic dispatch problem. Since then, it has been intensively studied and widely
used in power system operation and planning. In the past few decades, many stochastic optimization
methods such as Genetic Algorithm (GA), Evolutionary Programming (EP), and Particle Swarm
Optimization (PSO) have been applied to solve the OPF problem. In particular, PSO is a newly
proposed population based stochastic optimization algorithm. The main idea behind it is based on the
food-searching behavior of birds and fish. Compared with other stochastic optimization methods, PSO
has comparable or even superior search performance for some hard optimization problems in real
power systems. Nowadays, some modifications such as breeding and selection operators are considered
to make the PSO superior and robust. In this paper, we propose the Modified PSO (MPSO), in which
the mutation operator of GA is incorporated into the conventional PSO to improve the search
performance. To verify the optimal solution searching ability, the proposed approach has been evaluated
on an IEEE 30-bus test system. The results showed that performance of the proposed approach is better

than that of the standard PSO.
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1. Introduction

Optimal Power Flow (OPF) is a useful tool in planning
and operation of a power system [1]. The OPF problem can
be described as the optimal allocation of power system
controls to satisfy the specific objective function such as
fuel cost, power loss, and bus voltage deviation. The
control variables include the generator real powers, the
generator bus voltages, the tap ratios of transformer and the
reactive power generations of VAR sources.

Therefore, the OPF problem is a large-scale highly
constrained nonlinear non-convex optimization problem
[1]. To solve it, a number of conventional optimization
techniques such as nonlinear programming (NLP) [2],
quadratic programming (QP) [3], linear programming
(LP) [4], and interior point methods [5] have been
applied. All of these mathematical methods are
fundamentally based on the convexity of objective
function to find the global minimum. However, the OPF
problem has the characteristics of high nonlinearity and
nonconvexivity. Therefore, conventional methods based
on mathematical technique cannot give a guarantee to
find the global optimum. In addition, the performance of
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these traditional approaches also depends on the starting
points and is likely to converge to local minimum or even
diverge. Recently, many attempts to overcome the
limitations of the mathematical programming approaches
have been investigated such as Genetic Algorithm (GA),
Evolutionary = Programming (EP), and Evolution
Strategies (ES). Their applications to global optimization
problems become atiractive because they have better
global search abilities over conventional optimization
algorithms. The OPF problem has been solved with
Evolutionary Programming (EP) [6]. The proposed EP
based OPF were evaluated on an IEEE 30-bus system and
the obtained results were compared with those obtained
using a conventional gradient-based method. An
enhanced GA with adaptive crossover and mutation based
on the fitness statistics of population was applied to
minimize the active power loss in the transmission
network [7]. Recently, Bakirtzis et al. applied an
enhanced GA to solve the OPF problem [8].

Particle Swarm Optimizer (PSO) is a newly proposed
population based stochastic optimization aigorithm. The
main idea is based on the food-searching behavior of birds
and fish [9]. Compared with other stochastic optimization
methods, PSO has comparable or even superior search
performance for some hard optimization problems in real
power systems. In [10, 11] however, some modifications
such as breeding and selection operators are considered to
make the PSO superior and robust. In this paper, the
mutation operator of the GA is incorporated into the
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conventional PSO, so it can produce superior performance.
To verify the optimal solution search ability, the proposed
approach is applied to the fuel cost minimization problem
of an IEEE 30-bus power system.

2. Particle Swarm Optimization
2.1 Standard PSO Algorithm [12]

The PSO is a population based optimization method first
proposed by Kennedy and Eberhart [9]. PSO technique
finds the optimal solution using a population of particles.
Each particle represents a candidate solution to the
problem. PSO is basically developed through the
simulation of bird flocking in a two-dimensional space.
Some of the attractive features of the PSO include ease of
implementation and the fact that no gradient information is
required.

Suppose we have to find out the global minimum of
multi-modal  function £ (x) = f(x,,x,x,) in n-
dimensional space. In PSO, each particle i(7=1,"--,N) in
the populatien p is characterized by three vectors
(X;,V;, p;) which represent their temporal position X,
= (X1, X500 X,, ), velocity v, = (v,,V,,,°+V, ), and the
best position p, = (p,,, p,5,-** p,,) - The fitness of each
particle is given by the function value f(x,).

Since we look at the minimization problem in this
report, the lower the function value the better the fitness.
Each particle stores its best position p, called personal

best, p-best, which gives the best fitness in memory. They
can also consult their neighbor’s best position. Most
simply, the neighbor is the whole population (fully
connected topology), and therefore, the neighbor’s best is
the best position among personal bests of the whole
population. Hence, the position P, is called global best.

Now each particle i moves around the search space, and
renews its velocity component j using its past experience

(personal best) and the population’s experience (global
best) as follows,

x,.) (@

Viji = Vi +clr](pi,j - xi,j)+c2r2(pg,j -

The parameter ¢ and ¢, are the acceleration constant,
and 7, and r,are the uniform random numbers within the
range [0, 1].

If v, is larger than a predefined velocity v, called

maximum velocity, it is set tov,, . Similarly, if it is

smaller than — v itis fixedto—v, _, .

max >
Then the particle changes its position by the "equation of
motion":

Xij =Xy TV @

To improve the performance, the inertia-weight was
introduced by Eberhart and Shi [15] who added an inertia
weight in updating the equation of standard PSO.

v =ov, +en(p,—x ) +en(p, —x,;) )

The parameter @ is called inertia weight, which
controls the exploration (global search)-exploitation
(local search) tradeoff. When realizing the above
equation, ® may be a constant factor or it may
decrease linearly in a range or other appropriate form.
Suitable selection of inertia weight can provide a
balance between global exploration and local
exploitation.

Shi and Eberhart [16] recommended a time varying
inertia weight that linearly decreases with @, ,= 0.9 at the

initial step, iteration=0 and @ = 0.4 at the final step,

iteration= A4 X

iteration  °

o =(w,, —@,)*x (MAX — Iteration ) | MAX + g,

4

ini iteration iteration

In [15], Clerc has also introduced a constriction factor K
that has enhanced the particle’s ability to control velocities.
Therefore, Vmax or -Vmax is not necessary if the
following equation is satisfied. Clerc has suggested 0.792
as a good settlement for K and in this case ¢ is equal to

4.1.

X ))
(%)

vi, =K@, +en(p,;—x,;)+c,n(p,;

Now the constriction factor K is defined by using

2 ©6)

K =
|2—¢- 9’ — 49

@=c +c,,p >4 )

The comparison between inertia weight and constriction
factor demonstrates that the latter generates better solutions
in general [16]. So, in this paper, constriction factor is
combined with standard PSO.
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Fig. 1. Flowchart of PSO with mutation process
2.2 Modified PSO Algorithm

In recent research, some modifications to the standard PSO
are proposed mainly to improve the convergence and to
increase diversity. Angeline [10] showed that PSO can be
improved by adding the selection process, which is similar to
that of the GA. Through this process, the local search
capability of PSO is enhanced and diversity is reduced, which
is contradictory to the objective of natural selection. In [11],
PSO is modified by adding a reproduction step to standard
PSO, so we’ve called this “Breeding”. In the PSO searching
process, there is a possibility to converge on a local minimum
in early stage. In breeding PSO, the parent’s selection process
doesn't depend on the fitness of particles, thereby preventing
the best particles from dominating the breeding process, and
preventing premature convergence. In this paper, the mutation
process of the GA is applied to escape from local optimal
point and search in different areas of the search space. In this
paper, the mutation process is executed after the velocity and
position update are calculated as shown in Fig. 1.

A more detailed procedure of the mutation process is as
follows:

Step 1) To each particle, assign a randomly generated
mutation probability P,

Step 2) Compare the P, with threshold probability P,

Step3) If P <p_, generate the new particle by Equation
(8) and replace the particle

Mutation(Xi,j ) = random() x (Xmax,j - Xmin,j) + Xmin,j (8)

where random() is uniform random numbers within the

range [0, 1].
Step4) If P >Pp, ,gotoStep2)

For evaluating the performance of modified PSO, both
the standard PSO and the modified PSO were tested on
four benchmark minimization problems. These four
functions have been commonly used in the performance
evaluation of other evolutionary computation Algorithms
such as GA, ES, EP.

(Dejong-4)
30
f](xw.'.’x}O):Z l'x;t,— 512 < X, < 512 (9)
i-1

(Rastrigin)

20
fa(x,, 000, x,0) =200 + (x?-10 cos( 27x,)) (10)
i=1

512 <x,<5.12

(Colville)

fy(x, 200, x,) =100(x, —x° )+ (1-x,)% +90(x, —x2) +(1-x,)?

, (11)
+10.1((x, = 1) +(x, —=1)*)+19.8(x, ~I)(x, - 1)

-10<x, <10

(Ackley)

Firw o) = -20exp(-0.2, 130 67) — exp( 2 costa ) (12)

+20+e, —30<x <30

For each test function, 20 independent runs were carried
out respectively. The PSO and modified PSO parameters
were set to C,=2.05, C,=2.05, and K=0.792, which is

the typical value of standard PSO. The mutation threshold
probability was set to 0.05 in modified PSO. The 100 of
population size and 2,000 of maximum iteration were used
for all problems.

Tables 1 and 2 present the results of 20 runs. In the table,
iteration means the average iteration of 20 runs which is
satisfied with the convergence criteria of 107 and 107.
Time presents the required time to meet convergence
criteria. The results shown in Tables 1 and 2 present that
modified PSO provides better results in comparison with
the standard PSO for all test functions. Especially,
standard PSO cannot converge for the Rastrigin function,
otherwise modified PSO convergence is successful.
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Table 1. Results of 20 executions with convergence criteria

of 10
Standard PSO Modified PSO
Function
Iteration | Time (sec) | lteration | Time (sec)

DeJong-4 403 0.453 390 0.453
Rastrigin - - 1359 0.75
Colville 615 0.171 575 0.187

Ackley 404 0.468 364 0.4278

Table 2. Results of 20 executions with convergence criteria

of 10
' Standard PSO Modified PSO
Function
Iteration | Time (sec) | Iteration | Time (sec)

Delong-4 471 0.515 457 0.515
Rastrigin - - 1520 0.828

Colville 1166 0.25 1066 0.312

Ackley 613 0.625 579 0.562

3. Optimal Power Flow Problem Formulation

The OPF problem can be formulated as a constrained
optimization problem as follows:

]\/[inimize f(x,u) (13)
st g(x,u)=0 (14)
h(x,u)<0 (15)

Where x is the state variable such as slack bus power,
load bus voltage, generator reactive power, and so on. #
is a set of controllable variables like generator real power
outputs with the exception of the slack bus power output,
generator voltages, transformer tap ratios, and reactive
power generations of VAR sources.

In this paper, the objective function of OPF is
minimization of fuel cost for all generators which can be
formulated as Equation (16).

Ng
Min F(P,)=Y (a,+bP, +cP2)  (16)
i=1

Where F(P,) is the total fuel cost ($/hr) of all

generators; P is the active power output generated by

the i, generator; g, b,, c,are fuel cost coefficients;
and N < is the total number of generators.
The equality constraints g(x,u) are the nonlinear

power flow equations which are formulated as follows:

Ny
P,—P,~V.> VY;cos(6,—6,—p,)=0i=1---N, (17)
j=

Ny
Qgi -0, _Viz Vng sin( 6, _6_/ _¢4’/):O i:L'“,Ng (18)
j=1

Where Pgl. and Q, are the active and reactive power
generations at bus 7; P, and(Q, are the active and
reactive power demands at bus 7; V,and VJ are the

voltage magnitudes at buses i and j respectively;

0, and O, are the voltage angles at buses i and j
respectively; @y is the admittance angle; Yij is the

admittance magnitude; and NV, is the total number of buses.
The OPF inequality constraints, /z(x, u ) represent limits

of control variables and state variables. In this paper, the
constraints for stable system operation and limits of control
variables are considered. ‘

The system operation constraints consist of the
transmission line loadings, load bus voltages, reactive
power generations of the generator, and active power
generation of the slack generator. These variables should
be within the set lower and upper limits.

S, <8 i=1-,N, (19)
Vamin <V < Vima i=1-,N, (20)
Quuin Q4= Quinax I=L-,N, (21
Pomin S Poe S Py 22)

Concerning control variables, active power output and
voltage of generators, transformers tap ratio, and shunt
capacitors are restricted by lower and upper limits as
follows:

Pgimin < Pgi < Pgimax = 1" a ’Ng -1 (23)
Vemin <V <Vmae  i=L,N, (24)



Jong-Yul Kim, Hwa-Seok Lee and June-Ho Park 417

timin Sligtimax i:1’“"Nz (25)

4. Application Results

The proposed modified PSO was tested on the IEEE 30-
bus system as shown in Fig. 2 with quadratic generation
cost curves for minimizing the total fuel cost. The IEEE 30
bus system consists of 30 buses and 41 branches. It also
has a total of 15 control variables as follows: five unit
active power outputs, six generator-bus
magnitudes, and four transformer-tap settings.

Table 3. gives details of the generator data and
coefficients of quadratic generation cost curve.

Transformers are in-phase transformers with assumed
tapping ranges of 10%. The lower voltage magnitude limits
at all buses are 0.95pu, and the upper limits are 1.1pu.

In order to demonstrate the effectiveness of the proposed
approach, standard GA and PSO were also evaluated and

voltage

Fig. 2. IEEE 30 bus system

Table 3. Generator data and cost coefficients

I]\SI‘; s PGmin PGmax (r;nin S (r;nax Cost coefficients
(MW) | (MW) [(MVar)] (MVA)| a b c
1 50 200 -20 250 0.0 2.00 |0.00375
2 20 80 -20 100 0.0 1.75 |0.01750
5 15 50 -15 80 0.0 1.00 | 0.06250
8 10 35 -15 60 0.0 325 10.00834
11 10 30 -10 50 0.0 3.00 ]0.02500
13 12 40 -15 60 0.0 3.00 |0.02500

Table 4. The simulation parameters of each algorithm

GA PSO MPSO
Max Iteration 200 200 200
Population 50 50 50
Crossover rate 0.9 - -
Mutation rate 0.1 - 0.005
C, - 2.05 2.05
C; - 2.05 2.05
K - 2.974 2974
Table 5. Tap ratio of transformers
No. of
Transformer 1(4-12) | 2(6-9) | 3(6-10) |4(28-27)
Tap ratio 0.910 0.900 1.018 1.005

Table 6. Power output and voltage of generators

BusNumber | 098¢ | poviw) | Qq(MVan)
(pu)

1 1.099 178.12 2.41
2 1.078 48.61 5.48
5 1.046 21.16 22.13
8 1.053 2115 19.77
11 1.054 1227 2434
13 1.053 10.90 32.33

Total ] 292.23 106.46

compared with modified PSO. The simulation parameters
of each optimization algorithms are listed in Table 4.

For all tested algorithms, the population size is taken
equal to 50, and the maximum number of iterations is
set to 200. For each algorithm, 20 independent runs
were carried out. The tested algorithms were
implemented in Visual C++ and executed on a Pentium
1.8 GHz machine.

The simulation results of OPF using the MPSO

algorithm are represented in Table 5 and Table 6. Table V
shows the optimal tap ratio of transformers and Table VI
shows the power output and voltage of generators.
The best results of 20 test runs are tabulated in Table 7 in
comparison to those obtained from other algorithms. It can
be observed from Table 7 that the total cost obtained by the
proposed MPSO is 799.58%/h. With the same condition, the
problem was solved by using GA and PSO with optimal
costs of 802.12$/h and 801.26$/h, respectively. It is clearly
indicated that the proposed MPSO outperforms the GA and
standard PSO.
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Table 7. Optimization results and comparison

I;‘;t ];‘:)s GA PSO | MPSO
| 1 | 17613 | 17935 | 178.12
2 | 2 | #821 4901 | 4861
3 | 5 | 2068 1995 | 2116
4 | 8 | 2284 2004 | 2115
s | 11| 1194 12.88 12.27
6 | 13| 1313 11.55 10.90
Total PGMW)| 29295 | 29279 | 29223
Cofi’(?}hr) 802.12 | 80126 | 799.58

Fuel Cost{$/hr)

0 40 80 120 160 200
Generation

Fig. 3. Convergence of PSO and MPSO

Fig. 3 presents a graph that shows the improvement
tendency of MPSO with an increase in the number of
iterations. In this Figure, the standard PSO seems to be
trapped in a local optimum point in early stage and
cannot escape from this point until reaching the
maximum iterations. However, the MPSO can escape
the local optimum point by mutation activity, which can
make the MPSO improve the solution continuously.

5. Conclusion

Particle Swarm Optimizer (PSO) is a newly proposed
population based stochastic optimization algorithm.
Compared with other stochastic optimization methods,
PSO has comparable or even superior search
performance for some hard optimization problems in
real power systems. In recent research, some
modifications to the standard PSO are proposed mainly
to improve the convergence and to increase diversity.

Many research findings indicate that PSO can be
improved by the addition of a new operator such as
selection and breeding processes. Such added operations
can make the PSO more effective and robust in terms of
searching optimal solution. In this paper, the MPSO
with mutation process was proposed and applied to the
OPF problem. By introducing the mutation process,
MPSO prevents early convergence and provides better
performance than the standard PSO.
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