• Title/Summary/Keyword: optimality criteria method

Search Result 57, Processing Time 0.03 seconds

Parallelized Topology Design Optimization of the Frame of Human Powered Vessel (인력선 프레임의 병렬화 위상 최적설계)

  • Kim, Hyun-Suk;Lee, Ki-Myung;Kim, Min-Geun;Cho, Seon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.58-66
    • /
    • 2010
  • Topology design optimization is a method to determine the optimal distribution of material that yields the minimal compliance of structures, satisfying the constraint of allowable material volume. The method is easy to implement and widely used so that it becomes a powerful design tool in various disciplines. In this paper, a large-scale topology design optimization method is developed using the efficient adjoint sensitivity and optimality criteria methods. Parallel computing technique is required for the efficient topology optimization as well as the precise analysis of large-scale problems. Parallelized finite element analysis consists of the domain decomposition and the boundary communication. The preconditioned conjugate gradient method is employed for the analysis of decomposed sub-domains. The developed parallel computing method in topology optimization is utilized to determine the optimal structural layout of human powered vessel.

Parallel Topology Optimization on Distributed Memory System (분산 메모리 시스템에서의 병렬 위상 최적설계)

  • Lee Ki-Myung;Cho Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.291-298
    • /
    • 2006
  • A parallelized topology design optimization method is developed on a distributed memory system. The parallelization is based on a domain decomposition method and a boundary communication scheme. For the finite element analysis of structural responses and design sensitivities, the PCG method based on a Krylov iterative scheme is employed. Also a parallelized optimization method of optimality criteria is used to solve large-scale topology optimization problems. Through several numerical examples, the developed method shows efficient and acceptable topology optimization results for the large-scale problems.

  • PDF

Multi-objective topology and geometry optimization of statically determinate beams

  • Kozikowska, Agata
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.367-380
    • /
    • 2019
  • The paper concerns topology and geometry optimization of statically determinate beams with arbitrary number of supports. The optimization problem is treated as a bi-criteria one, with the objectives of minimizing the absolute maximum bending moment and the maximum deflection for a uniform gravity load. The problem is formulated and solved using the Pareto optimality concept and the lexicographic ordering of the objectives. The non-dominated sorting genetic algorithm NSGA-II and the local search method are used for the optimization in the Pareto sense, whereas the genetic algorithm and the exhaustive search method for the lexicographic optimization. Trade-offs between objectives are examined and sets of Pareto-optimal solutions are provided for different topologies. Lexicographically optimal beams are found assuming that the maximum moment is a more important criterion. Exact formulas for locations and values of the maximum deflection are given for all lexicographically optimal beams of any topology and any number of supports. Topologies with lexicographically optimal geometries are classified into equivalence classes, and specific features of these classes are discussed. A qualitative principle of the division of topologies equivalent in terms of the maximum moment into topologies better and worse in terms of the maximum deflection is found.

Discrete Optimization of Tall Steel Frameworks under Multiple Drift Constraints (다중변위 구속조건하에서 고층철골조의 이산형 최적화)

  • 이한주;김호수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.254-261
    • /
    • 1998
  • This study presents a discrete optimization of tall steel buildings under multiple drift constraints using a dual method. Dual method can replace the primary optimization problem with a sequence of approximate explicit subproblems. Since each subproblem is convex and separable, it can be efficiently solved by using a dual formulation. Specifically, this study considers the discrete-optimization problem due to the commercial standard steel sections to select member sizes. The results by the proposed method will be compared with those of the conventional optimality criteria method

  • PDF

Betterment of The Tractor Frame Design Applying Computation Mechanics Approach

  • Koike, Masayuki
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1212-1221
    • /
    • 1993
  • The shape optimization procedure applying finite element method was carried out for the specific purpose of analysis of a tractor chassis frame. Minimization of the mass as an objective function is executed under multiple constrained conditions of nodal displacements and stresses. The optimization process executions were succeeded in converging into single optimum solution. Although mass reduction and stress alleviation were attained by 40% and 26 to 24% respectively , the geometry of the shape is so complicated for fabrication that the refinement of the geometry is of necessity.

  • PDF

Optimization of Automotive Engine-cooling Fan Noise Using Response Surface Method (반응면 기법을 이용한 자동차 엔진 냉각팬의 저소음설계)

  • Lee, J.;Ahn, J.;Lee, S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.407-412
    • /
    • 2000
  • Response surface method is employed in optimizing the acoustic performance of automotive engine-cooling axial fans. The effects of modifications in blade geometry on noise reduction are investigated. Taking the far-field noise level as the objective, a quadratic response surface is constructed utilizing D-Optimality condition as the candidate-points selection criteria. It is shown that the quadratic model exhibits an excellent fitting capability resulting in the blade design with low far-field noise level.

  • PDF

Nonparametric confidence intervals for quantiles based on a modified ranked set sampling

  • Morabbi, Hakime;Razmkhah, Mostafa;Ahmadi, Jafar
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.2
    • /
    • pp.119-129
    • /
    • 2016
  • A new sampling method is introduced based on the idea of a ranked set sampling scheme in which taken samples in each set are dependent on previous ones. Some theoretical results are presented and distribution-free confidence intervals are derived for the quantiles of any continuous population. It is shown numerically that the proposed sampling scheme may lead to 95% confidence intervals (especially for extreme quantiles) that cannot be found based on the ordinary ranked set sampling scheme presented by Chen (2000) and Balakrishnan and Li (2006). Optimality aspects of this scheme are investigated for both coverage probability and minimum expected length criteria. A real data set is also used to illustrate the proposed procedure. Conclusions are eventually stated.

Development of LPAKO : Software of Simplex Method for Liner Programming (단체법 프로그램 LPAKO 개발에 관한 연구)

  • 박순달;김우제;박찬규;임성묵
    • Korean Management Science Review
    • /
    • v.15 no.1
    • /
    • pp.49-62
    • /
    • 1998
  • The purpose of this paper is to develope a large-scale simplex method program LPAKO. Various up-to-date techniques are argued and implemented. In LPAKO, basis matrices are stored in a LU factorized form, and Reid's method is used to update LU maintaining high sparsity and numerical stability, and further Markowitz's ordering is used in factorizing a basis matrix into a sparse LU form. As the data structures of basis matrix, Gustavson's data structure and row-column linked list structure are considered. The various criteria for reinversion are also discussed. The dynamic steepest-edge simplex algorithm is used for selection of an entering variable, and a new variation of the MINOS' perturbation technique is suggested for the resolution of degeneracy. Many preprocessing and scaling techniques are implemented. In addition, a new, effective initial basis construction method are suggested, and the criteria for optimality and infeasibility are suggested respectively. Finally, LPAKO is compared with MINOS by test results.

  • PDF

A Study on the Optimization of Steel Structures Considering Displacement Constraints (변위제약조건을 고려한 강구조물의 최적화에 관한 연구)

  • Kim, Ho Soo;Lee, Han Joo
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.657-666
    • /
    • 1998
  • This study presents an effective dual algorithm for the optimal design of steel structures with displacement constraints. The dual method can replace a primary optimization problem with a sequence of approximate explicit subproblems with a simple algebraic structure. Since being convex and separable, each subproblem can be solved efficiently by the dual method. Specifically, this study uses the principle of virtual work to obtain the displacement constraint equations with an explicit form and adds the linear regression equation expressing the relationships between the cross-section properties to the dual algorithm to reduce the number of design variables. Furthermore, this study deals with the discrete optimization problem to select members with the standard steel sections. Through numerical analyses, the proposed method will be compared with the conventional optimality criteria method.

  • PDF

Structural Optimization Study about Support Structure of Pressure Container (압력용기 지지구조물의 구조최적화 연구)

  • Kim, Chang-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.2 s.21
    • /
    • pp.22-29
    • /
    • 2005
  • In this study we performed topology optimization and size optimization about support structure of pressure container which is installed in a Common Bed. The optimization study shows that structure weight optimization results can be applied to navy ship. The topology optimization is performed by static load, homogenization and optimality criteria method and size optimization is performed by SOL200 of NASTRAN.