• Title/Summary/Keyword: optimal trajectory

Search Result 365, Processing Time 0.021 seconds

Analysis of Delta-V Losses During Lunar Capture Sequence Using Finite Thrust

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Lee, Joo-Hee;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.203-216
    • /
    • 2011
  • To prepare for a future Korean lunar orbiter mission, semi-optimal lunar capture orbits using finite thrust are designed and analyzed. Finite burn delta-V losses during lunar capture sequence are also analyzed by comparing those with values derived with impulsive thrusts in previous research. To design a hypothetical lunar capture sequence, two different intermediate capture orbits having orbital periods of about 12 hours and 3.5 hours are assumed, and final mission operation orbit around the Moon is assumed to be 100 km altitude with 90 degree of inclination. For the performance of the on-board thruster, three different performances (150 N with $I_{sp}$ of 200 seconds, 300 N with $I_{sp}$ of 250 seconds, 450 N with $I_{sp}$ of 300 seconds) are assumed, to provide a broad range of estimates of delta-V losses. As expected, it is found that the finite burn-arc sweeps almost symmetric orbital portions with respect to the perilune vector to minimize the delta-Vs required to achieve the final orbit. In addition, a difference of up to about 2% delta-V can occur during the lunar capture sequences with the use of assumed engine configurations, compared to scenarios with impulsive thrust. However, these delta-V losses will differ for every assumed lunar explorer's on-board thrust capability. Therefore, at the early stage of mission planning, careful consideration must be made while estimating mission budgets, particularly if the preliminary mission studies were assumed using impulsive thrust. The results provided in this paper are expected to lead to further progress in the design field of Korea's lunar orbiter mission, particularly the lunar capture sequences using finite thrust.

Development of Robot Simulator for Palletizing Operation Management S/W and Fast Algorithm for 'PLP' (PLP 를 위한 Fast Algorithm 과 팔레타이징 작업 제어 S/W 를 위한 로봇 시뮬레이터 개발)

  • Lim, Sung-Jin;Kang, Maing-Kyu;Han, Chang-Soo;Song, Young-Hoon;Kim, Sung-Rak;Han, Jeong-Su;Yu, Seung-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.609-616
    • /
    • 2007
  • Palletizing is necessary to promote the efficiency of storage and shipping tasks. These are, however some of the most monotonous, heavy and laborious tasks in the factory. Therefore many types of robot palletizing systems have been developed, but many robot motion commands still depend on the teaching pendent. That is, an operator inputs the motion command lines one by one. It is very troublesome, and most of all, the user must know how to type the code. That is why we propose a new GUI (Graphic User Interface) Palletizing System. To cope with this issue, we proposed a 'PLP' (Pallet Loading Problem) algorithm, Fast Algorithm and realize 3D auto-patterning visualization interface. Finally, we propose the robot palletizing simulator. Internally, the schematic of this simulator is as follows. First, an user inputs the physical information of object. Second, simulator calculates the optimal pattern for the object and visualizes the result. Finally, the calculated position data of object is passed to the robot simulator. To develop the robot simulator, we use an articulated robot, and analyze the kinematics and dynamics. Especially, All problem including thousands of boxes were completely calculated in less than 1 second and resulted in optimal solutions by the Fast Algorithm.

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

Highly dispersive substitution box (S-box) design using chaos

  • Faheem, Zaid Bin;Ali, Asim;Khan, Muhamad Asif;Ul-Haq, Muhammad Ehatisham;Ahmad, Waqar
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.619-632
    • /
    • 2020
  • Highly dispersive S-boxes are desirable in cryptosystems as nonlinear confusion sublayers for resisting modern attacks. For a near optimal cryptosystem resistant to modern cryptanalysis, a highly nonlinear and low differential probability (DP) value is required. We propose a method based on a piecewise linear chaotic map (PWLCM) with optimization conditions. Thus, the linear propagation of information in a cryptosystem appearing as a high DP during differential cryptanalysis of an S-box is minimized. While mapping from the chaotic trajectory to integer domain, a randomness test is performed that justifies the nonlinear behavior of the highly dispersive and nonlinear chaotic S-box. The proposed scheme is vetted using well-established cryptographic performance criteria. The proposed S-box meets the cryptographic performance criteria and further minimizes the differential propagation justified by the low DP value. The suitability of the proposed S-box is also tested using an image encryption algorithm. Results show that the proposed S-box as a confusion component entails a high level of security and improves resistance against all known attacks.

Optimal Supersonic Air-Launching Rocket Design Using Multidisciplinary System Optimization Approach (다분야 최적화 기법을 이용한 공중발사로켓 최적설계)

  • Choi Young Chang;Lee Jae-Woo;Byun Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.11-15
    • /
    • 2005
  • Compared with the conventional ground rocket launching, air-launching has many advantages. However, comprehensive and integrated system design approach is required because the physical geometry of air launch vehicle is quite dependent on the installation limitation of the mother plane. The system design has been performed using two different approaches: the sequential optimization and the multidisciplinary feasible(MDF) optimization method. Analysis modules include mission analysis, staging, propulsion analysis, configuration, weight analysis, aerodynamics analysis and trajectory analysis. MDF optimization shows better result than sequential optimization. As a result of system optimization, a supersonic air launching rocket with total mass of 1244.91 kg, total length of 6.18 m, outer diameter of 0.60 m and the payload mass of 7.5 kg has been successfully designed.

  • PDF

Performance Evaluation of Cochlear Implants Speech Processing Strategy Using Neural Spike Train Decoding (Neural Spike Train Decoding에 기반한 인공와우 어음처리방식 성능평가)

  • Kim, Doo-Hee;Kim, Jin-Ho;Kim, Kyung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.271-279
    • /
    • 2007
  • We suggest a novel method for the evaluation of cochlear implant (CI) speech processing strategy based on neural spike train decoding. From formant trajectories of input speech and auditory nerve responses responding to the electrical pulse trains generated from a specific CI speech processing strategy, optimal linear decoding filter was obtained, and used to estimate formant trajectory of incoming speech. Performance of a specific strategy is evaluated by comparing true and estimated formant trajectories. We compared a newly-developed strategy rooted from a closer mimicking of auditory periphery using nonlinear time-varying filter, with a conventional linear-filter-based strategy. It was shown that the formant trajectories could be estimated more exactly in the case of the nonlinear time-varying strategy. The superiority was more prominent when background noise level is high, and the spectral characteristic of the background noise was close to that of speech signals. This confirms the superiority observed from other evaluation methods, such as acoustic simulation and spectral analysis.

Composing Recommended Route through Machine Learning of Navigational Data (항적 데이터 학습을 통한 추천 항로 구성에 관한 연구)

  • Kim, Joo-Sung;Jeong, Jung Sik;Lee, Seong-Yong;Lee, Eun-seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.285-286
    • /
    • 2016
  • We aim to propose the prediction modeling method of ship's position with extracting ship's trajectory model through pattern recognition based on the data that are being collected in VTS centers at real time. Support Vector Machine algorithm was used for data modeling. The optimal parameters are calculated with k-fold cross validation and grid search. We expect that the proposed modeling method could support VTS operators' decision making in case of complex encountering traffic situations.

  • PDF

Optimal Supersonic Air-Launching Rocket Design Using Multidisciplinary System Optimization Approach (다분야 최적화 기법을 이용한 공중발사 로켓 최적설계)

  • Choi, Young-Chang;Lee, Jae-Woo;ByUn, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.26-32
    • /
    • 2005
  • Compared with the conventional ground rocket launching, air-launching has many advantages. However, a comprehensive and integrated system design approach is required because the physical geometry of air launch vehicle is quite dependent on the installation limitation of the mother plane. The system design has been performed using two different approaches: the sequential optimization and the multidisciplinary feasible(MDF) optimization method. Analysis modules include mission analysis, staging, propulsion analysis, configuration, weight analysis, aerodynamics analysis and trajectory analysis. MDF optimization shows better results than the sequential optimization. As a result of system optimization, a supersonic air launching rocket with total mass of 1244.91kg, total length of 6.36m, outer diameter of 0.60m and the payload mass of 7.5kg has been successfully designed.

A Study on the Real Power Optimization Using Interior-Point Method (IP법을 이용한 유효전력제어에 관한 연구)

  • Jung, Soon-Young;Jung, Jai-Kil;Lee, In-Yong;Jung, In-Hak;Hyun, Seung-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.99-101
    • /
    • 2000
  • Different optimization algorithms have been proposed to solve real and reactive power optimization problems. Most of all, linear programming techniques that employed a simplex method have been extensively used. But, the growth in the size of power systems demands faster and more reliable optimization techniques. An Interior Point(IP) mehod is based on an interior point approach to aim the solution trajectory toward the optimal point and is converged to the solution faster than the simplex method. This paper deals with the use of Successive Linear Programming(SLP) for the solution of the Security Constrained Economic Dispatch(SCED) problem. This problem is solved using the IP method. A comparison with simplex method shows that the interior point technique is reliable and faster than the simplex algorithm.

  • PDF

A Robust Fingertip Extraction and Extended CAMSHIFT based Hand Gesture Recognition for Natural Human-like Human-Robot Interaction (강인한 손가락 끝 추출과 확장된 CAMSHIFT 알고리즘을 이용한 자연스러운 Human-Robot Interaction을 위한 손동작 인식)

  • Lee, Lae-Kyoung;An, Su-Yong;Oh, Se-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.328-336
    • /
    • 2012
  • In this paper, we propose a robust fingertip extraction and extended Continuously Adaptive Mean Shift (CAMSHIFT) based robust hand gesture recognition for natural human-like HRI (Human-Robot Interaction). Firstly, for efficient and rapid hand detection, the hand candidate regions are segmented by the combination with robust $YC_bC_r$ skin color model and haar-like features based adaboost. Using the extracted hand candidate regions, we estimate the palm region and fingertip position from distance transformation based voting and geometrical feature of hands. From the hand orientation and palm center position, we find the optimal fingertip position and its orientation. Then using extended CAMSHIFT, we reliably track the 2D hand gesture trajectory with extracted fingertip. Finally, we applied the conditional density propagation (CONDENSATION) to recognize the pre-defined temporal motion trajectories. Experimental results show that the proposed algorithm not only rapidly extracts the hand region with accurately extracted fingertip and its angle but also robustly tracks the hand under different illumination, size and rotation conditions. Using these results, we successfully recognize the multiple hand gestures.