• Title/Summary/Keyword: optimal stiffness distribution

Search Result 49, Processing Time 0.029 seconds

Optimal Design of Friction Dampers based on the Story Shear Force Distribution of a Building Structure (건축구조물의 층전단력 분포에 기초한 마찰감쇠기의 최적설계)

  • Lee, Sang-Hyun;Min, Kyung-Won;Park, Ji-Hun;Lee, Roo-Jee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.21-30
    • /
    • 2005
  • In this study, a seismic design methodology for friction dampers based on the story shear force distribution of an elastic building structure is proposed. First, using two normalization methods for the slip-load of a friction damper, numerical analyses of various single-degree-of-freedom systems are peformed. From those analyses, the effect of the slip-load and the brace stiffness was investigated and the optimal silliness ratio of the brace versus original structure was found. Second, from the numerical analysis for five multi-story building structures with different natural frequency and the number of story, reasonable decision method for the total number of installation floor, location of installation and distribution of the slip-loads are drawn. In addition, an empirical equation on the optimal number of installation floor is proposed. Finally, the superiority of the proposed method compared to the existing design method is verified from the numerical analysis using real earthquake data.

Optimal design of seismic reinforcement for structures with asymmetric rigidity plans using genetic algorithm (유전자 알고리즘을 이용한 비대칭 강성 구조물의 내진보강 최적설계)

  • Lee, Joon-Ho;Kim, Yu-Seong;Sung, Eun-Hee
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.65-73
    • /
    • 2024
  • In this study, we propose an optimal design method by applying the Prefabricated Buckling Restrained Brace (PF-BRB) to structures with asymmetrically rigidity plan. As a result of the PF-BRB optimal design of a structure with an asymmetrically rigidity plan, it can be seen that the reduction effect of dynamic response is greater in the case of arrangement considering the asymmetric distribution of stiffness (Asym) than in the case of arrangement in the form of a symmetric distribution (Sym), especially It was confirmed that at an eccentricity rate of 20%, the total amount of reinforced PF-BRBs was also small. As a result of analyzing the dynamic response characteristics according to the change in eccentricity of the asymmetrically rigidity plan, the distribution of the reinforced PF-BRB showed that the larger the eccentricity, the greater the amount of damper distribution around the eccentric position. Additionally, when comparing the analysis models with an eccentricity rate of 20% and an eccentricity rate of 12%, the response reduction ratio of the 20% eccentricity rate was found to be large.

Occupant comfort evaluation and wind-induced serviceability design optimization of tall buildings

  • Huang, M.F.;Chan, C.M.;Kwok, Kenny C.S.
    • Wind and Structures
    • /
    • v.14 no.6
    • /
    • pp.559-582
    • /
    • 2011
  • This paper presents an integrated wind-induced dynamic analysis and computer-based design optimization technique for minimizing the structural cost of general tall buildings subject to static and dynamic serviceability design criteria. Once the wind-induced dynamic response of a tall building structure is accurately determined and the optimal serviceability design problem is explicitly formulated, a rigorously derived Optimality Criteria (OC) method is to be developed to achieve the optimal distribution of element stiffness of the structural system satisfying the wind-induced drift and acceleration design constraints. The effectiveness and practicality of the optimal design technique are illustrated by a full-scale 60-story building with complex 3D mode shapes. Both peak resultant acceleration criteria and frequency dependent modal acceleration criteria are considered and their influences on the optimization results are highlighted. Results have shown that the use of various acceleration criteria has different implications in the habitability evaluations and subsequently different optimal design solutions. The computer based optimization technique provides a powerful tool for the lateral drift and occupant comfort design of tall building structures.

Practical and efficient approaches for semi-rigid design of composite frames

  • Gil, Beatriz;Bayo, Eduardo
    • Steel and Composite Structures
    • /
    • v.7 no.2
    • /
    • pp.161-184
    • /
    • 2007
  • The use of composite semi-rigid connections is not fully exploited, in spite of its great number of advantages. Composite semi-rigid connections may lead to an optimal moment distribution that will render lighter structures. Furthermore, using the appropriate semi-rigid connection design, the stability of the frames against lateral loads may entirely rely on the joint stiffness, thus avoiding bracing systems and permitting more diaphanous designs. Although modern codes, such as the Eurocode 4 (EC4), propose thorough methods of analysis they do not provide enough insight and simplicity from the design point of view. The purpose of this paper is to introduce practical and efficient methods of analysis that will facilitate the work of a structural analyst starting from the global analysis of the composite frame and ending on the final connection design. A key aspect is the definition of the stiffness and strength of the connections that will lead to an optimal moment distribution in the composite beams. Two examples are presented in order to clarify the application of the proposed methods and to demonstrate the advantages of the semi-rigid composite design with respect to the alternative pinned and rigid ones. The final aim of the paper is to stimulate and encourage the designer on the use of composite semi-rigid structures.

Effect of Bone Cement Volume and Stiffness on Occurrences of Adjacent Vertebral Fractures after Vertebroplasty

  • Kim, Jin-Myung;Shin, Dong Ah;Byun, Dong-Hak;Kim, Hyung-Sun;Kim, Sohee;Kim, Hyoung-Ihl
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.5
    • /
    • pp.435-440
    • /
    • 2012
  • Objective : The purpose of this study is to find the optimal stiffness and volume of bone cement and their biomechanical effects on the adjacent vertebrae to determine a better strategy for conducting vertebroplasty. Methods : A three-dimensional finite-element model of a functional spinal unit was developed using computed tomography scans of a normal motion segment, comprising the T11, T12 and L1 vertebrae. Volumes of bone cement, with appropriate mechanical properties, were inserted into the trabecular core of the T12 vertebra. Parametric studies were done by varying the volume and stiffness of the bone cement. Results : When the bone cement filling volume reached 30% of the volume of a vertebral body, the level of stiffness was restored to that of normal bone, and when higher bone cement exceeded 30% of the volume, the result was stiffness in excess of that of normal bone. When the bone cement volume was varied, local stress in the bony structures (cortical shell, trabecular bone and endplate) of each vertebra monotonically increased. Low-modulus bone cement has the effect of reducing strain in the augmented body, but only in cases of relatively high volumes of bone cement (>50%). Furthermore, varying the stiffness of bone cement has a negligible effect on the stress distribution of vertebral bodies. Conclusion : The volume of cement was considered to be the most important determinant in endplate fracture. Changing the stiffness of bone cement has a negligible effect on the stress distribution of vertebral bodies.

Multi-Objective Integrated Optimal Design of Hybrid Structure-Damper System Satisfying Target Reliability (목표신뢰성을 만족하는 구조물-감쇠기 복합시스템의 다목적 통합최적설계)

  • Ok, Seung-Yong;Park, Kwan-Soon;Song, Jun-Ho;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.9-22
    • /
    • 2008
  • This paper presents an integrated optimal design technique of a hybrid structure-damper system for improving the seismic performance of the structure. The proposed technique corresponds to the optimal distribution of the stiffness and dampers. The multi-objective optimization technique is introduced to deal with the optimal design problem of the hybrid system, which is reformulated into the multi-objective optimization problem with a constraint of target reliability in an efficient manner. An illustrative example shows that the proposed technique can provide a set of Pareto optimal solutions embracing the solutions obtained by the conventional sequential design method and single-objective optimization method based on weighted summation scheme. Based on the stiffness and damping capacities, three representative designs are selected among the Pareto optimal solutions and their seismic performances are investigated through the parametric studies on the dynamic characteristics of the seismic events. The comparative results demonstrate that the proposed approach can be efficiently applied to the optimal design problem for improving the seismic performance of the structure.

Multi-objective BESO topology optimization for stiffness and frequency of continuum structures

  • Teimouri, Mohsen;Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.181-190
    • /
    • 2019
  • Topology optimization of structures seeking the best distribution of mass in a design space to improve the structural performance and reduce the weight of a structure is one of the most comprehensive issues in the field of structural optimization. In addition to structures stiffness as the most common objective function, frequency optimization is of great importance in variety of applications too. In this paper, an efficient multi-objective Bi-directional Evolutionary Structural Optimization (BESO) method is developed for topology optimization of frequency and stiffness in continuum structures simultaneously. A software package including a Matlab code and Abaqus FE solver has been created for the numerical implementation of multi-objective BESO utilizing the weighted function method. At the same time, by considering the weaknesses of the optimized structure in single-objective optimizations for stiffness or frequency problems, slight modifications have been done on the numerical algorithm of developed multi-objective BESO in order to overcome challenges due to artificial localized modes, checker boarding and geometrical symmetry constraint during the progressive iterations of optimization. Numerical results show that the proposed Multiobjective BESO method is efficient and optimal solutions can be obtained for continuum structures based on an existent finite element model of the structures.

Development of CAD System for Optimal Topology Design using Density Distribution (밀도 분포를 이용한 최적 위상 설계 시스템의 개발)

  • 정진평;이건우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.852-859
    • /
    • 1994
  • Optmal topology design is to search the optimal layout of the structure which can be used fot the shape of the conceptual design stage. Our objective is to maximize the stiffness of the structure under a material usage constraint. The density of each finite element is the design variable and its relationship with Young's modulus is expressed by quadratic form. The shape is represented by the entire density distribution, the structural analysis is performed by finite element method and the optimization is achieved by feasible direction method. Unlike optimality criteria method,feasible direction method can handle various problems simultaneously, that is, multi- objectives and multi-constraints. Total optimization time can be reduced by the approximation of the material property and fewer design variables than homogenization method. Topology optimization is applied to design the shape of ribs.

  • PDF

A Study on Hydrodynamic Stiffness Characteristics of Air Bearing for High Speed Spindle

  • Lee, J.Y.;Lee, D.W.;Seong, S.H.;Lee, Y.C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.115-116
    • /
    • 2002
  • This study was carried out as one of efforts to overcome difficulties in air bearing design due to low stiffness and low damping. Hydrodynamic effects on hydrodynamic stiffness of a fluid film in a high speed air bearing with tow-row air sources are investigated. The hydrodynamic effects by the high speed over DN 1,000,000 and eccentricity of a proceeding which are not considered in conventional design of an air bearing need to be reconsidered. The hydrodynamic effects, which dominantly influence on the load capacity of air bearing, are caused mainly by proceeding speed, eccentricity, and the source positions. The two-row source arrangement in the air bearing produces quite unique hydrodynamic effects with respect to pressure distribution of the air film. Optimal arrangement of the two-row sources improves performance of an air bearing in film reaction force and loading capacity of high speed spindles. This study compares the pressure distribution by numerical simulation as a function of eccentricity of proceeding and the source positions. The air source position 1/7L form one end of an air bearing was found to be superior to source position of 1/4L. The dynamic stiffness were obtained using a two-dimensional cutting method which can directly measure the cutting reaction forces and the displacements of the spindle in two directions using a tool dynamometer and transducer sensors. Heat generation in the air film can not be negligible over the speed of DN 2,000,000. In order to analysis effects of heat generation on the characteristics of air bearing, high cooling bearing spindle and low cooling bearing spindle were tested and compared. Characteristics of the frequency response of shaft and motion of run out errors were different for the spindle. The test results show that, in the case of low cooling bearing spindle, the stiffness became smaller due to heat generation. The results, which were obtained for high speed region, may be used as a design information for spindle which can be applied to precision devices such as ultra precision grinding and ultra high speed milling.

  • PDF

A simple damper optimization algorithm for both target added damping ratio and interstorey drift ratio

  • Aydin, Ersin
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.83-109
    • /
    • 2013
  • A simple damper optimization method is proposed to find optimal damper allocation for shear buildings under both target added damping ratio and interstorey drift ratio (IDR). The damping coefficients of added dampers are considered as design variables. The cost, which is defined as the sum of damping coefficient of added dampers, is minimized under a target added damping ratio and the upper and the lower constraint of the design variables. In the first stage of proposed algorithm, Simulated Annealing, Nelder Mead and Differential Evolution numerical algorithms are used to solve the proposed optimization problem. The candidate optimal design obtained in the first stage is tested in terms of the IDRs using linear time history analyses for a design earthquake in the second stage. If all IDRs are below the allowable level, iteration of the algorithm is stopped; otherwise, the iteration continues increasing the target damping ratio. By this way, a structural response IDR is also taken into consideration using a snap-back test. In this study, the effects of the selection of upper limit for added dampers, the storey mass distribution and the storey stiffness distribution are all investigated in terms of damper distributions, cost function, added damping ratio and IDRs for 6-storey shear building models. The results of the proposed method are compared with two existing methods in the literature. Optimal designs are also compared with uniform designs according to both IDRs and added damping ratios. The numerical results show that the proposed damper optimization method is easy to apply and is efficient to find optimal damper distribution for a target damping ratio and allowable IDR value.