• Title/Summary/Keyword: optimal stiffness distribution

Search Result 48, Processing Time 0.026 seconds

Optimal Redundant Actuation of Parallel Manipulators with High Operational Stiffness (고강성 병렬형 로봇의 최적 여유 구동)

  • Kim, Sung-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.181-189
    • /
    • 2000
  • This paper presents the optimal redundant actuation of parallel manipulators for complicated robotic applications such as cutting grinding drilling and digging that require a high degree of operational stiffness as well as the balance between force applicability and dexterity. First by taking into account the distribution(number and location) of active joints the statics and the operational stiffness of a redundant parallel manipulator are formulated and the effects of actuation redundancy are analyzed, Second for given task requirements including joint torque limit task force maximum allowable disturbance and maximum allowable deflection the task execution conditions of a redundant parallel manipulator are derived and the efficient testing formulas are provided. Third to achieve high operational stiffness while maintaining moderate dexterity the redundant actuation of a parallel manipulator is optimized which determines the optimal distribution of active joints and the optimal internal joint torque, Finally the simulation results for the optimal redundant actuation of a planar parallel manipulator are given.

  • PDF

Optimal stiffness distribution in preliminary design of tubed-system tall buildings

  • Alavi, Arsalan;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.731-739
    • /
    • 2018
  • This paper presents an optimal pattern for distributing stiffness along a framed tube structure through an analytic equation, which may be used during the preliminary design stage. Most studies in this field are computationally intensive and time consuming, while a hand-calculation method, as presented here, is a more suitable tool for sensitivity analyses and parametric studies. Approach in development of the analytic model is to minimize the mean compliance (external work) for a given volume of material. A variational statement of the problem is made, and a specified deformation-profile is obtained as the necessary condition for a minimum; enforcing this condition, stiffness is then computed. Due to some near-zero values for stiffness, the problem is modified by considering a lower bound constraint. To deal with this constraint, the design domain is assumed to be divided into two zones of constant stiffness and constant curvature; and the problem is restated in terms of these concepts. It will be shown that this methodology allows for easy computation of stiffness through an analytic and dimensionless equation, valid in any system of units. To show practicality of the proposed method, a tubed-system structure with uniform stiffness distribution is redesigned using the proposed model. Comparative analyses of the results reveal that in addition to simplicity of the proposed method, it provides a rather high degree of accuracy for real-world problems.

Minimum dynamic response of cantilever beams supported by optimal elastic springs

  • Aydin, Ersin
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.377-402
    • /
    • 2014
  • In this study, optimal distribution of springs which supports a cantilever beam is investigated to minimize two objective functions defined. The optimal size and location of the springs are ascertained to minimize the tip deflection of the cantilever beam. Afterwards, the optimization problem of springs is set up to minimize the tip absolute acceleration of the beam. The Fourier Transform is applied on the equation of motion and the response of the structure is defined in terms of transfer functions. By using any structural mode, the proposed method is applied to find optimal stiffness and location of springs which supports a cantilever beam. The stiffness coefficients of springs are chosen as the design variables. There is an active constraint on the sum of the stiffness coefficients and there are passive constraints on the upper and lower bounds of the stiffness coefficients. Optimality criteria are derived by using the Lagrange Multipliers. Gradient information required for solution of the optimization problem is analytically derived. Optimal designs obtained are compared with the uniform design in terms of frequency responses and time response. Numerical results show that the proposed method is considerably effective to determine optimal stiffness coefficients and locations of the springs.

Optimal placement of elastic steel diagonal braces using artificial bee colony algorithm

  • Aydin, E.;Sonmez, M.;Karabork, T.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.349-368
    • /
    • 2015
  • This paper presents a new algorithm to find the optimal distribution of steel diagonal braces (SDB) using artificial bee colony optimization technique. The four different objective functions are employed based on the transfer function amplitude of; the top displacement, the top absolute acceleration, the base shear and the base moment. The stiffness parameter of SDB at each floor level is taken into account as design variables and the sum of the stiffness parameter of the SDB is accepted as an active constraint. An optimization algorithm based on the Artificial Bee Colony (ABC) algorithm is proposed to minimize the objective functions. The proposed ABC algorithm is applied to determine the optimal SDB distribution for planar buildings in order to rehabilitate existing planar steel buildings or to design new steel buildings. Three planar building models are chosen as numerical examples to demonstrate the validity of the proposed method. The optimal SDB designs are compared with a uniform SDB design that uniformly distributes the total stiffness across the structure. The results of the analysis clearly show that each optimal SDB placement, which is determined based on different performance objectives, performs well for its own design aim.

Analysis of Axial Load Characteristics of Air-Dynamic Bearings of Various Curvatures (다양한 곡률을 가진 공기 동압 베어링의 축방향 부하특성 해석)

  • 최우천;신용호;최정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.129-135
    • /
    • 2000
  • Air-dynamic bearings are increasingly used in supporting small high-speed rotating bodies. This study investigates the effects of design parameters on the axial stiffness of spiral-grooved air bearings of various curvatures. Design parameters are fundamental clearance, groove depth, and bearing number. The pressure distribution at the clearance between the stator and rotor of the bearing is obtained by solving the Reynolds equation, and the supporting load and the axial linear stiffness are calculated from the pressure distribution. It is found that a larger curvature increases the axial linear stiffness more and that there exist an optimal groove depth for the linear stiffness of the air bearing. It is also found that the linear stiffness has a linear relationship with the bearing number.

  • PDF

Optimal Topoloty Design of Structures and Ribs Using Density Distribution (밀도 분포를 이용한 구조물 및 리브의 최적 위상 설계)

  • Chung, Jinpyung;Lee, Kunwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.66-77
    • /
    • 1996
  • Optimal topology design is to search the optimal configuration of a structure which can be used as a shape at the conceptual design stage. Our objective is to maximize the stiffness of the structures and ribs under a material usage constraintl. The density of each finite element is the design variable and its relationship with Young's modulus is expressed by quadratic form. The configuration is represented by the entire density distribution, the structural analysis is performed by finite element method and the optimiza- tion is performed by Feasible Direction Method. Feasible Direction Method can handle various problems simultaneously, that is, mult-objectives and multi-constraints. Total computation time can be reduced by the quadratic relationship between the density and the material property and fewer design variables than Homogenization Method. Toplogy optimization technique developed in this research is applied to design the shapes of the ribs.

  • PDF

Design optimization of reinforced concrete structures

  • Guerra, Andres;Kiousis, Panos D.
    • Computers and Concrete
    • /
    • v.3 no.5
    • /
    • pp.313-334
    • /
    • 2006
  • A novel formulation aiming to achieve optimal design of reinforced concrete (RC) structures is presented here. Optimal sizing and reinforcing for beam and column members in multi-bay and multistory RC structures incorporates optimal stiffness correlation among all structural members and results in cost savings over typical-practice design solutions. A Nonlinear Programming algorithm searches for a minimum cost solution that satisfies ACI 2005 code requirements for axial and flexural loads. Material and labor costs for forming and placing concrete and steel are incorporated as a function of member size using RS Means 2005 cost data. Successful implementation demonstrates the abilities and performance of MATLAB's (The Mathworks, Inc.) Sequential Quadratic Programming algorithm for the design optimization of RC structures. A number of examples are presented that demonstrate the ability of this formulation to achieve optimal designs.

On the Optimal Distribution of Structural Stiffness in Beam-type Buildings (보형태 빌딩구조물의 최적 강성 분배에 관하여)

  • 최동호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.314-321
    • /
    • 1998
  • This paper presents motion based design methodology for structures. Current design methodologies are primarily strength-based. Such methods are adequate when strength is expected to govern the design. But as the slenderness of structures increases, motion such as displacement and acceleration becomes the dominant criterion. In this paper, a preliminary design approach for beam-type buildings, where motion dominates the design, is discussed by effectively distributing the magnitude of structural stiffness to control the distribution of displacement under service load. This analytic development is illustrated using a cantilever beam as the structure under static loads, free vibration, and forced vibration.

  • PDF

Topology optimization of bracing systems using a truss-like material model

  • Zhou, Kemin
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.231-242
    • /
    • 2016
  • To minimize the compliance of frame, a method to optimize the topology of bracing system in a frame is presented. The frame is first filled uniformly with a truss-like continuum, in which there are an infinite number of members. The frame and truss-like continuum are analysed by the finite element method altogether. By optimizing the distribution of members in the truss-like continuum over the whole design domain, the optimal bracing pattern is determined. As a result, the frame's lateral stiffness is enforced. Structural compliance and displacement are decreased greatly with a smaller increase in material volume. Since optimal bracing systems are described by the distribution field of members, rather than by elements, fewer elements are needed to establish the detailed structure. Furthermore, no numerical instability exists. Therefore it has high calculation effectiveness.

Proposal for Optimal Position of Offset Outrigger System (오프셋 아웃리거 구조시스템의 최적 위치에 대한 제안)

  • Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.84-91
    • /
    • 2019
  • For the goal of the proposal for optimum position of offset outrigger system, a structural schematic design of 70 stories building was carried out, using the general structure analysis program of MIDAS-Gen. In this research, the primary factors of this analysis research were the shear wall stiffness, the frame stiffness, the outrigger stiffness, the stiffness of column linked in outrigger system, etc. To achieve the aim of this study, we analyzed and studied the lateral displacement in top level, the force distribution of outrigger, the existing model of optimal outrigger location, and so on. This paper proposed the optimal position of offset outrigger system. Furthermore it is considered that the study results can be useful in getting the structure engineering data for seeking the optimal position of offset outrigger in the tall building.