The questionnaire survey was conducted on 225 farmers in Gyeonggi-do, Jeollanam-do and Jeollabuk-do. A total of 189 (84%) farmers responded. 72% of the respondents were males, 50.3% were aged 60 or older, and 51.3% had less than 5 years of farming experience. 78.8% of the respondents are pesticide-free, and 44.4% of respondents have less than 0.5 ha of farming scale. 61.4% of the cultivated crops were vegetable crops. The order of seeds and seedlings to buy was tomato (23.3%), cucumber (12.2%) and pepper (10.6%). The cost of purchasing seeds ranged from a minimum of 100,000 won to a maximum of 5 million won. 78.3% of respondents answered that they well-knew or knew about organic seeds. 78.3% of respondents answered that they knew or knew about organic seeds. Of the positive effects of mandatory use of organic seeds, 41.3% of respondents said they would increase confidence in organic certification. However, 41% of respondents who opposed the mandatory use of organic seeds said that "The strengthening of regulations will make organic agriculture more difficult." When the use of organic seeds is mandatory, 43.4% of the respondents favor direct support for the purchase of organic seeds, which should be supported politically by the state. When organic seeds were supplied, the disease resistant seeds (53.4%) was the preferred characteristic of organic seeds. For the optimal price of organic seeds, 38.6% of respondents wanted the same price as the commercialized conventional seed. In this study, the questionnaire was conducted for three major organic farming regions, but many of the respondents were judged to have a legal position on the mandatory use of organic seeds. Therefore, the results of this study can be used as a basic data for reviewing the legislation on the organic seed production and distribution suitable for the situation of Korean organic farming.
Bitcoin prices have been soaring recently as investors flock to cryptocurrency exchanges. The purpose of this study is to predict the Bitcoin price using a deep learning model and analyze whether Bitcoin is profitable through investment strategy. LSTM is utilized as Bitcoin prediction model with nonlinearity and long-term memory and the profitability of MA cross-over strategy with predicted prices as input variables is analyzed. Investment performance of Bitcoin strategy using LSTM forecast prices from 2013 to 2021 showed return improvement of 5.5% and 46% more than market price MA cross-over strategy and benchmark Buy & Hold strategy, respectively. The results of this study, which expanded to recent data, supported the inefficiency of the cryptocurrency market, as did previous studies, and showed the feasibility of using the deep learning model for Bitcoin investors. In future research, it is necessary to develop optimal prediction models and improve the profitability of Bitcoin investment strategies through performance comparison of various deep learning models.
Journal of Korean Society of Industrial and Systems Engineering
/
v.46
no.4
/
pp.152-159
/
2023
This study endeavors to enrich investment prospects in cryptocurrency by establishing a rationale for investment decisions. The primary objective involves evaluating the predictability of four prominent cryptocurrencies - Bitcoin, Ethereum, Litecoin, and EOS - and scrutinizing the efficacy of trading strategies developed based on the prediction model. To identify the most effective prediction model for each cryptocurrency annually, we employed three methodologies - AutoRegressive Integrated Moving Average (ARIMA), Long Short-Term Memory (LSTM), and Prophet - representing traditional statistics and artificial intelligence. These methods were applied across diverse periods and time intervals. The result suggested that Prophet trained on the previous 28 days' price history at 15-minute intervals generally yielded the highest performance. The results were validated through a random selection of 100 days (20 target dates per year) spanning from January 1st, 2018, to December 31st, 2022. The trading strategies were formulated based on the optimal-performing prediction model, grounded in the simple principle of assigning greater weight to more predictable assets. When the forecasting model indicates an upward trend, it is recommended to acquire the cryptocurrency with the investment amount determined by its performance. Experimental results consistently demonstrated that the proposed trading strategy yields higher returns compared to an equal portfolio employing a buy-and-hold strategy. The cryptocurrency trading model introduced in this paper carries two significant implications. Firstly, it facilitates the evolution of cryptocurrencies from speculative assets to investment instruments. Secondly, it plays a crucial role in advancing deep learning-based investment strategies by providing sound evidence for portfolio allocation. This addresses the black box issue, a notable weakness in deep learning, offering increased transparency to the model.
The price competitiveness of photovoltaic system (PV system) has risen recently due to the growth of industries, however, it is rarely applied to the greenhouse compared to other renewable energy. In order to evaluate the application of PV system in the greenhouse, power generation and optimal installation area of PV panels should be analyzed. For this purpose, the prediction of the heating and cooling loads of the greenhouse is necessary at first. Therefore, periodic and maximum energy loads of a multi-span greenhouse were estimated using Building Energy Simulation(BES) and optimal installation area of PV panels was derived in this study. 5 parameter equivalent circuit model was applied to analyzed power generation of PV system under different installation angle and the optimal installation condition of the PV system was derived. As a result of the energy simulation, the average cooling load and heating load of the greenhouse were 627,516MJ and 1,652,050MJ respectively when the ventilation rate was $60AE{\cdot}hr^{-1}$. The highest electric power production of the PV system was generated when the installation angle was set to $30^{\circ}$. Also, adjustable PV system produced about 6% more electric power than the fixed PV system. Optimal installation area of the PV panels was derived with consideration of the estimated energy loads. As a result, optimal installation area of PV panels for fixed PV system and adjustable PV system were $521m^2$ and $494m^2$ respectively.
The process of obtaining third-party financing contacts was analyzed via a two-stage game model: a "signaling game" for the first stage,and a "principal-agent model" for the second stage. The two-stage game was solved by a process of backward induction. In the second stage game, the optimal effort level of the energy saving company (ESCO), the optimal compensation scheme of the energy user, and the optimal payoffs for both parties were derived for each subgame. The optimal solutions forthe different subgames were then compared with each other. Our main finding was that if there is some restriction on ESCO's revenue (e.g. a progressive sales tax) that causes ESCO's revenue toincrease at a decreasing rate, then the optimal sharing ratio is uniquely determined at a level of strictly less than one under a linear compensation scheme, i.e. a unique balance exists. Subgames have a unique equilibrium arrived at separately for each situation,. Within this equilibrium, energy users accept energy audit proposals from H-type ESCOs with high levels of technology, but reject proposals from L-type ESCOs with low levels of technology. While L-type ESCOs cannot attain profits in the third-party financing market, H-type ESCOS can pocket the price differential between L-type and H-type audit fees. Accordingly, revenues in an H-type ESCO equilibrium increase not only in line with the technology of the ESCO inquestion, but also faster than in an L-type equilibrium due to more advanced technology. At the same time, energy users receive some positive payoff by allowing ESCOs to perform third-party financing tasks within their existing energy system without incurring any extra costs.
Korean Journal of Construction Engineering and Management
/
v.12
no.2
/
pp.111-120
/
2011
High-rise buildings have recently increased over the residential, commercial and office facilities, thus an understanding of construction cost for high-rise building projects has been a fundamental issue due to enormous construction cost as well as unpredictable market conditions and fluctuations in the rate of inflation by long-term construction periods of high-rise projects. Especially, recent violent fluctuations of construction material prices add to problems in construction cost forecasting. This research, therefore, develops a time-series model with the Box-Jenkins methodologies and material prices time-series data in Korea in order to forecast future trends of unit prices of required materials. BIM (Building Information Modeling) approaches are also used to analyze injection time of construction resources and to conduct quantity takeoff so that total material price can be forecasted. Comparative analysis of Predictability of tentative ARIMA (Autoregressive Integrated Moving Average) models was conducted to determine optimal time-series model for forecasting future price trends. Proposed BIM based time series forecasting model can help to deal with sudden changes in economic conditions by estimating future material prices.
Purpose: The globalization of the Korean restaurant franchise industry differs from the business performance of enhancing the brand image and customers' intention to revisit depending on the degree of localization marketing. Therefore, it is necessary to consider the extent to which the localization marketing activities of overseas Korean restaurant franchise companies affect the customer's perception. This study aims to investigate the effects of localization marketing (Localized Menu, Localized Price, Localized Service Experience, Localized Promotion, Localized Physical Environment) of Korean restaurant franchise companies on customer revisit intention. Research design, data, and methodology: For this study, 150 questionnaires using local Korean restaurants in Beijing, China, were analyzed using SPSS Ver.21 and AMOS Ver.22. Result: It was confirmed that the localized menu, localized service experience, and localized physical environment all affect the intention to revisit customers. Based on these verification results, if overseas franchises fully recognize localization marketing, which is an important factor for local business success, and establish localization strategies, they can gain an edge in competition with local Korean restaurants or restaurant franchises founded by locals. There may be a higher probability that However, it was found that localization price and localization promotion had no mediating effect of brand image between revisit intention and revisit intention. It was found that it had no effect on the degree of inquiry and had a negative effect. Conclusions: Due to the impact of the COVID-19 pandemic, there have been many changes in the domestic and overseas food service industry over the past two years. Therefore, in future research, it is necessary to study the localization of overseas Korean restaurant franchise companies that are more multidimensionally subdivided. Various measures of customized localization marketing for optimal regional characteristics should be developed and applied to enhance customer revisiting and brand image of Korean restaurant franchise companies entering overseas. In the future, this study will be meaningful data for the establishment of localization marketing (Localized Menu, Localized Price, Localized Service Experience, Localized Promotion, Localized Physical Environment) strategies for Korean restaurant franchise companies that consider overseas expansion or have already entered.
This research is a comparative analysis of the U.S. S&P 500 index using the volatility breakout strategy against the Buy and Hold approach. The volatility breakout strategy is a trading method that exploits price movements after periods of relative market stability or concentration. Specifically, it is observed that large price movements tend to occur more frequently after periods of low volatility. When a stock moves within a narrow price range for a while and then suddenly rises or falls, it is expected to continue moving in that direction. To capitalize on these movements, traders adopt the volatility breakout strategy. The 'k' value is used as a multiplier applied to a measure of recent market volatility. One method of measuring volatility is the Average True Range (ATR), which represents the difference between the highest and lowest prices of recent trading days. The 'k' value plays a crucial role for traders in setting their trade threshold. This study calculated the 'k' value at a general level and compared its returns with the Buy and Hold strategy, finding that algorithmic trading using the volatility breakout strategy achieved slightly higher returns. In the future, we plan to present simulation results for maximizing returns by determining the optimal 'k' value for automated trading of the S&P 500 index using artificial intelligence deep learning techniques.
As so many marketers get to use diverse sales promotion methods, manufacturer and retailer in a channel often use them too. In this context, diverse issues on sales promotion management arise. One of them is the issue of unplanned buying. Consumers' unplanned buying is clearly better off for the retailer but not for manufacturer. This asymmetric influence of unplanned buying should be dealt with prudently because of its possibility of provocation of channel conflict. However, there have been scarce studies on the sales promotion management strategy considering the unplanned buying and its asymmetric effect on retailer and manufacturer. In this paper, we try to find a better way for a manufacturer in a channel to promote performance through the retailer's sales promotion efforts when there is potential of unplanned buying effect. We investigate via game-theoretic modeling what is the optimal cost sharing level between the manufacturer and retailer when there is unplanned buying effect. We investigated following issues about the topic as follows: (1) What structure of cost sharing mechanism should the manufacturer and retailer in a channel choose when unplanned buying effect is strong (or weak)? (2) How much payoff could the manufacturer and retailer in a channel get when unplanned buying effect is strong (or weak)? We focus on the impact of unplanned buying effect on the optimal cost sharing mechanism for sales promotions between a manufacturer and a retailer in a same channel. So we consider two players in the game, a manufacturer and a retailer who are interacting in a same distribution channel. The model is of complete information game type. In the model, the manufacturer is the Stackelberg leader and the retailer is the follower. Variables in the model are as following table. Manufacturer's objective function in the basic game is as follows: ${\Pi}={\Pi}_1+{\Pi}_2$, where, ${\Pi}_1=w_1(1+L-p_1)-{\psi}^2$, ${\Pi}_2=w_2(1-{\epsilon}L-p_2)$. And retailer's is as follows: ${\pi}={\pi}_1+{\pi}_2$, where, ${\pi}_1=(p_1-w_1)(1+L-p_1)-L(L-{\psi})+p_u(b+L-p_u)$, ${\pi}_2=(p_2-w_2)(1-{\epsilon}L-p_2)$. The model is of four stages in two periods. Stages of the game are as follows. (Stage 1) Manufacturer sets wholesale price of the first period($w_1$) and cost sharing level of channel sales promotion(${\Psi}$). (Stage 2) Retailer sets retail price of the focal brand($p_1$), the unplanned buying item($p_u$), and sales promotion level(L). (Stage 3) Manufacturer sets wholesale price of the second period($w_2$). (Stage 4) Retailer sets retail price of the second period($p_2$). Since the model is a kind of dynamic games, we try to find a subgame perfect equilibrium to derive some theoretical and managerial implications. In order to obtain the subgame perfect equilibrium, we use the backward induction method. In using backward induction approach, we solve the problems backward from stage 4 to stage 1. By completely knowing follower's optimal reaction to the leader's potential actions, we can fold the game tree backward. Equilibrium of each variable in the basic game is as following table. We conducted more analysis of additional game about diverse cost level of manufacturer. Manufacturer's objective function in the additional game is same with that of the basic game as follows: ${\Pi}={\Pi}_1+{\Pi}_2$, where, ${\Pi}_1=w_1(1+L-p_1)-{\psi}^2$, ${\Pi}_2=w_2(1-{\epsilon}L-p_2)$. But retailer's objective function is different from that of the basic game as follows: ${\pi}={\pi}_1+{\pi}_2$, where, ${\pi}_1=(p_1-w_1)(1+L-p_1)-L(L-{\psi})+(p_u-c)(b+L-p_u)$, ${\pi}_2=(p_2-w_2)(1-{\epsilon}L-p_2)$. Equilibrium of each variable in this additional game is as following table. Major findings of the current study are as follows: (1) As the unplanned buying effect gets stronger, manufacturer and retailer had better increase the cost for sales promotion. (2) As the unplanned buying effect gets stronger, manufacturer had better decrease the cost sharing portion of total cost for sales promotion. (3) Manufacturer's profit is increasing function of the unplanned buying effect. (4) All results of (1),(2),(3) are alleviated by the increase of retailer's procurement cost to acquire unplanned buying items. The authors discuss the implications of those results for the marketers in manufacturers or retailers. The current study firstly suggests some managerial implications for the manufacturer how to share the sales promotion cost with the retailer in a channel to the high or low level of the consumers' unplanned buying potential.
The efficient algorithms are suggested in this study for solving the multicommodity network flow problems applied to Communications Systems. These problems are typical NP-complete optimization problems that require integer solution and in which the computational complexity increases numerically in appropriate with the problem size. Although the suggested algorithms are not absolutely optimal, they are developed for computationally efficient and produce near-optimal and primal integral solutions. We supplement the traditional Lagrangian method with a price-directive decomposition. It proceeded as follows. First, A primal heuristic from which good initial feasible solutions can be obtained is developed. Second, the dual is initialized using marginal values from the primal heuristic. Generally, the Lagrangian optimization is conducted from a naive dual solution which is set as ${\lambda}=0$. The dual optimization converged very slowly because these values have sort of gaps from the optimum. Better dual solutions improve the primal solution, and better primal bounds improve the step size used by the dual optimization. Third, a limitation that the Lagrangian decomposition approach has Is dealt with. Because this method is dual based, the solution need not converge to the optimal solution in the multicommodity network problem. So as to adjust relaxed solution to a feasible one, we made efficient re-allocation heuristic. In addition, the computational performances of various versions of the developed algorithms are compared and evaluated. First, commercial LP software, LINGO 4.0 extended version for LINDO system is utilized for the purpose of implementation that is robust and efficient. Tested problem sets are generated randomly Numerical results on randomly generated examples demonstrate that our algorithm is near-optimal (< 2% from the optimum) and has a quite computational efficiency.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.