• Title/Summary/Keyword: optimal maintenance

Search Result 855, Processing Time 0.026 seconds

A study on the PBL Application Scheme for Optimal Maintenance of the KF-X Project (한국형전투기(KF-X)의 최적정비를 위한 PBL 적용방안에 관한 연구)

  • Park, Keun-Seog;Yoo, Yong-Hyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.3
    • /
    • pp.10-18
    • /
    • 2016
  • This paper deals with the Performance Based Logistics(PBL) application scheme pertaining to optimal maintenance program for logistics of Korean Fighter Experimental(KF-X) Project. For enhancement of the performance based logistics system application to KF-X program the selection of appropriate standards fit to maximize cost-cutting, a set of performance metrics fit for the purpose of the contract, foreign technology dependence of core equipments and parts were considered. Thus, selecting appropriate standards fit for Korean logistics environment, domestic maintenance enterprise for stable rate of operation of KF-X, a systematic reliability task that is able to measure quantitative combat capability are suggested.

The Optimal Inventory Level of the Maintenance Float to Achieve a Target Operational Availability of Korean-Made Helicopter (한국형 헬기의 목표 운용가용도 달성을 위한 정비대충장비 최적 재고수준 결정)

  • Lee, Sang-Jin;Kim, Seong-Won
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.81-93
    • /
    • 2007
  • Achieving a target operational availability is more economical and efficient than having many quantities of the weapon system, since the cost of weapon system becomes expensive. The intent of this study is twofold; first, we develop the simulation model to determine the optimal inventory level of the maintenance float while achieving a target operational availability of the Korean-made helicopter. The quantity decision model considers following factors such as a reliability. a turn around time(TAT). a protection level for inventory, and so on. Second, we analyze whether the existence of a lateral transshipment among bases and the reduction of TAT relate to an inventory level and the operational availability. The research result shows that both TAT and lateral transshipment have an effect on reducing the inventory level of the maintenance float and improving an operational availability.

An Optimal Preventive Maintenance Policy with General Repair : ($\theta$, m)) Maintenance Policy (일반 수리 모형에서의 최적 예방 보전 정책에 관한 연구 : ($\theta$, m) 보전 정책)

  • Hwang, Jung-Yoon;Park, You-Jin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.9-16
    • /
    • 2009
  • 본 논문에서는 시스템 연령(年齡)에 의해 보전 활동의 효과를 설명하는 일반 수리(修理) 개념을 이용한 최적 보전(保全) 정책에 대한 연구를 수행하였다. 본 논문에서는 주기적인 일반 수리와 고장 시 최소 수리가 적용되는 최적 보전 정책을 고려하였다. 따라서 일반 수리에 따른 보전 정책의 비용 함수를 도출하였고 최적 보전 정책을 도출하는 알고리즘을 제시하였고 예제를 통해 알고리즘의 성능을 분석하였다. 이 연구를 통해 시스템을 운영하는데 있어서 어느 수준의 보전 정책을 적용하며 어느 정도의 기간 동안 시스템을 유지할 것인지에 대안을 제공할 수 있을 것이다.

The Generator Maintenance Scheduling using Fuzzy Multi-criteria (퍼지다목적함수를 이용한 발전기보수유지계획의 수립)

  • 최재석;도대호;이태인
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.131-138
    • /
    • 1995
  • A new technique using integer programming based on fuzzy multi-criteria function is proposed for generator maintenance scheduling. Minimization maintenance delay cost and maximization reserve power are considered for fuzzy multi-criteria function. To obtain an optimal solution for generator maintenance scheduling under fuzzy environment, fuzzy multi-criteria integer programming is used. In the maintenance scheduling, a characteristic feature of the presented approach is that the crisp constraints with uncertainty can be taken into account by using fuzzy set theory and so more flexible solution can be obtained. The effectiveness of the proposed approach is demonstrated by the simulation results.

  • PDF

Development of Stochastic Expected Cost Model for Preventive Optimal- Maintenance of Armor Units of Rubble-Mound Breakwaters (경사제 피복재의 예방적 최적 유지관리를 위한 추계학적 기대비용모형의 개발)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.276-284
    • /
    • 2013
  • A stochastic expected cost model has been suggested by combining the nonlinear cumulative damage model with the expected cost model together which can be useful for doing the preventive optimal-maintenance of the armor units of rubble-mound breakwaters. The suggested model has been satisfactorily calibrated by comparison of the results from others models, also the sensitivity analysis has been carried out in detail under the variation of the associated parameters with the model. The optimal repair times can be directly evaluated by minimizing the expected cost rates that depend on the social importances, damage intensity functions and resistance limits. Finally, the present cost model has been straightforwardly applied to the armor units of rubble-mound breakwaters. Based on the assumption of turning the damaged structure back to the state as good as new after repairs, the required optimal repair times and magnitudes can be determined quantitatively in terms of the optimum balance between the costs and benefits on the preventive maintenance.

A study of the railroad vehicles cycle and method (철도차량 검수주기 및 방법에 관한 연구)

  • Yu, Yang-Ha
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.158-166
    • /
    • 2007
  • After constructing the high-speed railroad, KORAIL acquired advanced maintenance techniques about Rolling-stocks. Also RCM theory is applied to maintenance field like as inspection period and method. In the meantime, the development of the maintenance methode for Rolling-stock is slow when it compares to the components and system technology. For this reason KORAIL tries to build the optimal maintenance system which can lead the Rolling-stock maintenance technique. The existing vehicle except High Speed train KTX are separated to electric motor car, electric locomotive, diesel locomotive, diesel car, passenger car and freight car. The inspection period and methode for existing vehicles which mentioned above will be examined and the optimal Rolling-stock maintenance technique will be applied.

  • PDF

Preventive maintenance model with extended warranty (연장된 보증을 갖는 예방보전모형)

  • Jung, Ki Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.773-781
    • /
    • 2013
  • Recently, an extended warranty of the system following the expiration of the basic warranty is becoming increasingly popular to the user. In this respect, we suggest a preventive maintenance model following the expiration of extended warranty with minimal repair warranty from the user's point of view in this paper. Under basic warranty and extended warranty, the failed system is minimally repaired by the manufacturer at no cost to the user. For the preventive maintenance model, we derive the expressions for the expected cycle length, the expected total cost and the expected cost rate per unit time. Also, we determine the optimal preventive maintenance period and the optimal preventive maintenance number by minimizing the expected cost rate per unit time. Finally, the numerical examples are presented to illustrate the purpose when the failure time of the system has a Weibull distribution.

An Application of a Binary PSO Algorithm to the Generator Maintenance Scheduling Problem (이진 PSO 알고리즘의 발전기 보수계획문제 적용)

  • Park, Young-Soo;Kim, Jin-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1382-1389
    • /
    • 2007
  • This paper presents a new approach for solving the problem of maintenance scheduling of generating units using a binary particle swarm optimization (BPSO). In this paper, we find the optimal solution of the maintenance scheduling of generating units within a specific time horizon using a binary particle swarm optimization algorithm, which is the discrete version of a conventional particle swarm optimization. It is shown that the BPSO method proposed in this paper is effective in obtaining feasible solutions in the maintenance scheduling of generating unit. IEEE reliability test systems(1996) including 32-generators are selected as a sample system for the application of the proposed algorithm. From the result, we can conclude that the BPSO can find the optimal solution of the maintenance scheduling of the generating unit with the desirable degree of accuracy and computation time, compared to other heuristic search algorithm such as genetic algorithms. It is also envisaged that BPSO can be easily implemented for similar optimizations and scheduling problems in power system problems to obtain better solutions and improve convergence performance.

The Usefulness of Hard Time Task for Weapon System in Considering Shape Parameter of Weibull Life Time Distribution and Maintenance Cost (와이블 분포의 형상모수와 정비비용을 고려한 Hard Time 예방정비업무의 효용성에 관한 연구)

  • Kim, Mansoo;Ji, Woong Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.274-283
    • /
    • 2016
  • The study of maintenance planning is important in military weapon systems because it can improve their availability and reduce the operational and maintenance cost during the total life cycle. In maintenance planning, it is important to determine the preventive maintenance task and its optimal interval. This paper focuses on the hard time task, which is one of the preventive maintenance tasks. A hard time task removes an item or restorative action before some specified maximum age limit to prevent functional failure. The Monte-Carlo simulation model was proposed to help understand the cost effectiveness of a hard time task. In the simulation, various shape parameters of the Weibull distribution and cost ratio of corrective maintenance to preventive maintenance were assumed. Using a Monte-Carlo simulation, a quantified cost saving effect and optimal preventive maintenance interval were suggested.

A Development of EMAS (Easy Maintenance Assistance Solution) for Industrial Gas Turbine (산업용 가스터빈을 위한 정비지원 시스템 개발에 관한 연구)

  • Kang, Myoungcheol;Ki, Jayoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.91-100
    • /
    • 2017
  • The solution was developed for the maintenance decision support of combined cycle power plant gas turbine. The developed solution was applied to MHI501G gas turbine and is, in present, on the process of field test at GUNSAN combined cycle power plant, South Korea. The developed solution provides the calculated result of optimal overhaul maintenance period through following modules: Real Time Performance Monitoring, Model-Based Diagnostics, Performance Trend Analysis, Optimal Overhaul Maintenance Interval, Compressor Washing Period Management, and Blade Path Temperature Analysis. Model-Based Diagnostics module analyzed the differences between the data of gas turbine performance model and the online measurement. Compressor washing management module suggests the optimal point of balancing between the compressor performance and the maintenance cost.