• Title/Summary/Keyword: optimal linearization

Search Result 84, Processing Time 0.027 seconds

Trajectory Optimization for Impact Angle Control based on Sequential Convex Programming (순차 컨벡스 프로그래밍을 이용한 충돌각 제어 비행궤적 최적화)

  • Kwon, Hyuck-Hoon;Shin, Hyo-Sub;Kim, Yoon-Hwan;Lee, Dong-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.159-166
    • /
    • 2019
  • Due to the various engagement situations, it is very difficult to generate the optimal trajectory with several constraints. This paper investigates the sequential convex programming for the impact angle control with the additional constraint of altitude limit. Recently, the SOCP(Second-Order Cone Programming), which is one area of the convex optimization, is widely used to solve variable optimal problems because it is robust to initial values, and resolves problems quickly and reliably. The trajectory optimization problem is reconstructed as convex optimization problem using appropriate linearization and discretization. Finally, simulation results are compared with analytic result and nonlinear optimization result for verification.

Security Constrained Economic Dispatch Using Primal Interior Point Method (Primal Interior Point법에 의한 선로 전력조류 제약을 고려한 경제급전)

  • Jeong, Rin-Hak;Jeong, Jae-Gil;Lee, Seung-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.10
    • /
    • pp.480-488
    • /
    • 2001
  • This paper presents a technique that can obtain an optimal solution for the Security-Constrained Economic Dispatch (SCED) problems using the Interior Point Method (IPM) while taking into account of the power flow constraints. The SCED equations are formulated by using only the real power flow equations from the optimal power flow. Then an algorithm is presented that can linearize the SCED equations based on the relationships among generation real power outputs, loads, and transmission losses to obtain the optimal solutions by applying the linear programming (LP) technique. The objective function of the proposed linearization algorithm are formulated based on the fuel cost functions of the power plants. The power balance equations utilize the Incremental Transmission Loss Factor (ITLF) corresponding to the incremental generation outputs and the line constraints equations are linearized based on the Generalized Generation Distribution Factor (GGDF). Finally, the application of the Primal Interior Point Method (PIPM) for solving the optimization problem based on the proposed linearized objective function is presented. The results are compared with the Simplex Method and the promising results ard obtained.

  • PDF

Optimal Control Design for Automatic Ship Berthing by Using Bow and Stern Thrusters

  • Bui, Van Phuoc;Jeong, Jeong-Soon;Kim, Young-Bok;Kim, Dong-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.10-17
    • /
    • 2010
  • Conventionally, because it is difficult to control a ship in shallow water and because attempting to do so creates unwanted environmental effects, maneuvering ships in the harbor area for berthing is usually done with the assistance of tugboats. In this paper, we propose a new method for berthing ships automatically by using bow and stern thrusters. Specifically, a steering motion model of a ship is considered, and parameters in the equation are evaluated by the system identification technique. An optimal controller based on observations was designed from the linearization of the non-linear ship motion in the horizontal plane. It is used to reduce the uncertainty about the ship's dynamics and reduce measurement requirements. The performance of the controller was also analyzed for its robustness relative to avoiding disturbing the environment due to winds, currents, and wave-drift forces. Experiments were conducted to estimate the potential for identifying result and the design of the controller. Specifically, in this paper, the system modeling and tracking control approach are discussed based on a two-degree-of-freedom (2DOF) servo-system design.

Design of an OPtimal Controller for the Nonlinear Robot Manipulators with the Actuator Dynamics (조작기의 동특성을 고려한 비선형 로봇 매니퓰레이터의 최적 제어기 설계)

  • 김학범;이양범
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.9
    • /
    • pp.1376-1385
    • /
    • 1993
  • This paper presents a new dynamic model which is represented by the second order differenatial equation and itcludes the robot arm dynamics as well as the actuator dynamics. The model exhibits excellent performance in the steady state and transient response. In addition the time varing nonlinear and coupled dynamic system has been linearized and decoupled by using nonlinear feedback and linearization method. In this case a pole assignment law is used to improve stability, and the optimal control altorithm is applied to the error equation to minimize the path error. In applying the proposed algorithm to the three joint manipulator with actuators, we obtained very encouraging results.

  • PDF

An Optimal Routing for Point to Multipoint Connection Traffics in ATM Networks (일대다 연결 고려한 ATM 망에서의 최적 루팅)

  • Chung, Sung-Jin;Hong, Sung-Pil;Chung, Hoo-Sang;Kim, Ji-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.4
    • /
    • pp.500-509
    • /
    • 1999
  • In this paper, we consider an optimal routing problem when point-to-point and point-to-multipoint connection traffics are offered in an ATM network. We propose a mathematical model for cost-minimizing configuration of a logical network for a given ATM-based BISDN. Our model is essentially identical to the previous one proposed by Kim(Kim, 1996) which finds a virtual-path configuration where the relevant gains obtainable from the ATM technology such as the statistical multiplexing gain and the switching/control cost-saving gain are optimally traded-off. Unlike the Kim's model, however, ours explicitly considers the VP's QoS(Quality of Service) for more efficient utilization of bandwidth. The problem is a large-scale, nonlinear, and mixed-integer problem. The proposed algorithm is based on the local linearization of equivalent-capacity functions and the relaxation of link capacity constraints. As a result, the problem can be decomposed into moderate-sized shortest path problems, Steiner arborescence problems, and LPs. This fact renders our algorithm a lot faster than the previous nonlinear programming algorithm while the solution quality is maintained, hence application to large-scale network problems.

  • PDF

Sensitivity Analysis with Optimal Input Design and Model Predictive Control for Microalgal Bioreactor Systems (미세조류 생물반응기 시스템의 민감도분석을 위한 최적입력설계 및 모델예측제어)

  • Yoo, Sung Jin;Oh, Se-Kyu;Lee, Jong Min
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.87-92
    • /
    • 2013
  • Microalgae have been suggested as a promising feedstock for producing biofuel because of their potential of lipid production. In this study, a first principles ODE model for microalgae growth and neutral lipid synthesis proposed by Surisetty et al. (2010) is investigated for the purpose of maximizing the rate of microalgae growth and the amount of neutral lipid. The model has 6 states and 12 parameters and follows the assumption of Droop model which explains the growth as a two-step phenomenon; the uptake of nutrients is first occurred in the cell, and then use of intra-cellular nutrient to support cells growth. In this study, optimal input design using D-optimality criterion is performed to compute the system input profile and sensitivity analysis is also performed to determine which parameters have a negligible effect on the model predictions. Furthermore, model predictive control based on successive linearization is implemented to maximize the amount of neutral lipid contents.

Analysis and Design of Jumping Robot System Using the Model Transformation Method

  • Suh Jin-Ho;Yamakita Masaki
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.200-210
    • /
    • 2006
  • This paper proposes the motion generation method in which the movement of the 3-links leg subsystem in constrained to slider-link and a singular posture can be easily avoided. This method is the realization of jumping control moving in a vertical direction, which mimics a cat's behavior. To consider the movement from the point of the constraint mechanical system, a robotics system for realizing the motion will change its configuration according to the position. The effectiveness of the proposed scheme is illustrated by simulation and experimental results.

A study on the trajectory controllable minimum-time controller using modified bang-bang control law (뱅뱅 제어법을 변형한 중간 경로 제동이 가능한 최단시간 제어기의 개발)

  • 이현오;양우석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.44-47
    • /
    • 1996
  • Bang-bang control law provides the optimal solution for a minimum-time control problem, but ignores the intermediate path except for the initial and final points. In this paper, a near minimum-time suboptimal fuzzy logic controller is introduced that can control the intermediate path. A dynamic model for a system is established using the average dynamics method of linearization. System model is continuously updated over the control time periods. This makes it suitable for high speed or variable payload applications. Bang-bang control theory is modified and used to derive the preliminary control law. A fuzzy logic algorithm is then applied to adjust and find the best solution. The solution will provide the suboptimal minimum-time control law which can avoid obstacles in the workspace.

  • PDF

Study on Nonlinear Filter Using Unscented Transformation Update (무향변환을 이용한 비선형 필터에 대한 연구)

  • Yoon, Jangho
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • The optimal estimation of a general continuous-discrete system can be achieved through the solution of the Fokker-Planck equation and the Bayesian update. Due the high nonlinearity of the equation of motion of the system and the measurement model, it is necessary to linearize the both equation. To avoid linearization, the filter based on Fokker-Planck equation is designed. with the unscented transformation update mechanism, in which the associated Fokker-Planck equation was solved efficiently and accurately via discrete quadrature and the measurement update was done through the unscented transformation update mechanism. This filter based on the Direct Quadrature Moment of Method(DQMOM) and the unscented transformation update is applied to the bearing only target tracking problem. The proposed filter can still provide more accurate estimation of the state than those of the extended Kalman filter especially when measurements are sparse. Simulation results indicate that the advantages of the proposed filter based on the DQMOM and the unscented transformation update make it a promising alternative to the extended Kalman filter.

Optimal Design of Helicopter Tailer Boom (헬리곱터 꼬리 날개의 최적 설계)

  • 한석영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.419-424
    • /
    • 1999
  • In this paper, the comparison of the first order approximation schemes such as SLP (sequential linear programming), CONLIN(convex linearization), MMA(method of moving asymptotes) and the second order approximation scheme, SQP(sequential quadratic programming) was accomplished for optimization of and nonlinear structures. It was found that MMA and SQP(sequential quadratic programming) was accomplished for optimization of and nonlinear structures. It was found that MMA and SQP are the most efficient methods for optimization. But the number of function call of SQP is much more than that of MMA. Therefore, when it is considered with the expense of computation, MMA is more efficient than SQP. In order to examine the efficiency of MMA for complex optimization problem, it was applied to the helicopter tail boom considering column buckling and local wall buckling constraints. It is concluded that MMA can be a very efficient approximation scheme from simple problems to complex problems.

  • PDF