• Title/Summary/Keyword: optimal irradiation time

Search Result 74, Processing Time 0.028 seconds

Characteristics of direct transesterification using ultrasound on oil extracted from spent coffee grounds

  • Kim, Yeong Su;Woo, Duk Gam;Kim, Tae Han
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.470-478
    • /
    • 2020
  • Spent coffee grounds (SCG), the residue after brewing coffee beverage, is a promising biodiesel feedstock due to its high oil contents (15-20%). However, SCG should be pretreated to reduce the high free fatty acid content, which hampers transesterification reaction. To overcome this, we explored a direct transesterification reaction of SCG using ultrasound irradiation and identified the optimal sonication parameters. A high fatty acid methyl ester (FAME) content, up to 97.2%, could be achieved with ultrasound amplitude of 99.2 ㎛, irradiation time of 10 min, and methanol to oil ratio of 7:1 in the presence of potassium hydroxide concentration of 1.25 wt.%. In addition, we demonstrated that ultrasound irradiation is an efficient method to produce biodiesel from untreated SCG in a short time with less energy than the conventional mechanical stirring method. The physical and chemical properties of the SCG biodiesel met the requirements for an alternative fuel to the current commercial biodiesel.

Efficiency of Gamma Irradiation to Inactivate Growth and Fumonisin Production of Fusarium moniliforme on Corn Grains

  • Mansur, Ahmad Rois;Yu, Chun-Cheol;Oh, Deog-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.209-216
    • /
    • 2014
  • The efficiency of gamma irradiation (0, 1, 5, 10, 15, 20, and 30 kGy) as a sterilization method of corn samples (30 g) artificially contaminated with Fusarium moniliforme stored at normal condition ($25^{\circ}C$ with approximate relative humidity (RH) of 55%) and optimal condition ($25^{\circ}C$ with a controlled RH of 97%) was studied. The results showed that the fungal growth and the amount of fumonisin were decreased as the dose of gamma irradiation increased. Gamma irradiation at 1-5 kGy treatment significantly inhibited the growth of F. moniliforme by 1-2 log reduction on corn samples (P < 0.05). Sublethal effect of gamma irradiation was observed at 10-20 kGy doses after storage, and a complete inactivation required 30 kGy. Fungal growth and fumonisin production increased with higher humidity and longer storage time in all corn samples. This study also demonstrated that there was no strict correlation between fungal growth and fumonisin production. Storage at normal condition significantly resulted in lower growth and fumonisin production of F. moniliforme as compared with those stored at optimal condition (P < 0.05). Gamma irradiation with the dose of ${\geq}5$ kGy followed by storage at normal condition successfully prolonged the shelf life of irradiated corns, intended for human and animal consumptions, up to 7 weeks.

Treatment Planning Software for High Dose Rate Remote Afterloading Brachytherapy of Uterine Cervical Cancer (Personal computer를 이용한 자궁경부암의 고선량을 강내치료 계획)

  • Huh, Seung-Jae;Kang, Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.4 no.2
    • /
    • pp.183-186
    • /
    • 1986
  • In brachytherapy of uterine cervical cancer using the high dose rate remote afterloading system, it is of prime importance to determine the position of the radiation sources and to estimate the irradiation time. However, calculation with manual method is so time consuming and laborious, that authors designed a software as an aid to intracavitary radiotherapy Planning using the personal computer to obtain the precision of treatment without being too complicated for routine use. Optimal source arrangement in combination with dose rate at each specific points and irradiation time can be easily determined using this software in several minutes.

  • PDF

Study of Optimal Conditions Affecting the Photothermal Effect and Fluorescence Characteristics of Indocyanine Green

  • Seo, Sung Hoon;Bae, Min Gyu;Park, Hyeong Ju;Ahn, Jae Sung;Lee, Joong Wook
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.554-561
    • /
    • 2021
  • Indocyanine green (ICG) is a cyanine dye that has been used in medical diagnostics based on fluorescence imaging, and in medical therapy based on the photothermal effect. It is important to systematically understand the photothermal effect and fluorescence characteristics of ICG simultaneously. By varying a number of conditions such as laser power density, laser irradiation wavelength, concentration of ICG solution, and exposure time of laser irradiation, the intensity properties of fluorescence and the temperature change induced by the photothermal effect are measured simultaneously using a charge-coupled-device camera and a thermal-imaging camera. The optimal conditions for maximizing the photothermal effect are determined, while maintaining a relatively long lifetime and high efficiency of the fluorescence for fluorescence imaging. When the concentration of ICG is approximately 50 ㎍/ml and the laser power density exceeds 1.5 W/cm2, the fluorescence lifetime is the longest and the temperature induced by the photothermal effect rapidly increases, exceeding the critical temperature sufficient to damage human cells and tissues. The findings provide useful insight into the realization of effective photothermal therapy, while also specifying the site to be treated and enabling real-time treatment monitoring.

Standardization of a Mass-Production Technique for Pycnidiospores of Dydymella bryoniae, Gummy Stem Blight Fungus of Cucurbits (박과작물 덩굴마름병 Didymella bryoniae의 병포자 대량 생산 방법의 표준화)

  • 권미경;홍정래;선해정;성기영;조백호;김기청
    • Korean Journal Plant Pathology
    • /
    • v.13 no.2
    • /
    • pp.105-112
    • /
    • 1997
  • Didymella bryoniae, gummy stem blight fungus of cucurbits, has been known not to produce its pycnidium in vitro without irradiation. Various methods for producing pycnidiospores of the fungus as an inoculum have been used. However, those methods have not been verified in terms of efficiency of the productivity, activity and synchronous maturation of the inoculum. Therefore, a pycnidiospore production method in vitro that is highly reliable and reproducible has to be developed to obtain a large amount of inoculum for screening disease resistant varieties or effective fungicides. Here we standardized a mass-production technique for pycnidiospores of D. bryoniae in vitro by comprehensively finding the optimal conditions such as kinds and thickness of cultural medium, growing temperature, and quality and duration of irradiation as well as examining the activity and pathogenicity of the pycnidiospores reproduced. In brief, mycelial colony on the PDA plate was cultured at 26$^{\circ}C$ for 2 days under the darkness, and then the plate was irradiated under the UV light (12 hr/a day) for 2~3 days at the same temperature(26$^{\circ}C$). Two days after UV irradiation, a great number of pycnidia was simultaneously formed. This plate was subjected to darkness again for 4~5 days to mature pycnidiospores. We could obtain a large amount of inoculum that is synchronously matured in a short period of time through the above procedures.

  • PDF

Optimization of Cultivation and Storage Conditions on Red Cabbage Seed Sprouts (적양배추 새싹채소의 발아 및 저장 조건 최적화)

  • Baek, Kyeong-Hwan;Jo, Doekjo;Yoon, Sung-Ran;Kim, Gui-Ran;Park, Ju-Hwan;Lee, Gee-Dong;Kim, Jeong-Sook;Kim, Yuri;Han, Bumsoo;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.13-19
    • /
    • 2013
  • This study was carried out to find the optimal conditions for red cabbage seed sprouts in terms of their physicochemical and sensory qualities by electron-beam irradiation, cultivation and storage using the response surface methodology (RSM). Moisture content ($R^2$=0.9638) was affected by irradiation dose and cultivation time. Total phenolics content ($R^2$=0.9117) was mainly affected by irradiation dose, but carotenoid content ($R^2$=0.8338) was affected in the order of irradiation dose, cultivation time and storage time. Sensory properties were also affected by irradiation dose, and thus scores decreased as irradiation dose increased. The optimum conditions estimated by superimposing total phenolics content and overall acceptance were 2.2-3.8 kGy of the irradiation dose, 3.0-4.0 days of cultivation and 2.0-3.0 days of storage.

A Study on the Synthesis of ACE/PP-g-AN Hybrid Fibers by Irradiation and Separation of Uranium (방사선 중합에 의한 ACF/PP-g-AN 복합섬유의 합성 및 우라늄 분리에 관한 연구)

  • 황택성;황대성;노영창
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.174-181
    • /
    • 2000
  • The ACF/PP-g-AN copolymers were synthesized by the irradiational grafting of acrylonitrile onto ACF/PP hybrid fabric. The synthesis of the ACF/PP-g-AN copolymer was evidenced by the band of -C=N absorption peak at 2250 $cm^{-1}$ / and amidoximation was evidenced by the band of -OH and -NH$_2$ peak at 3450 $cm^{-1}$ / on FT-IR spectrum. The optimal time for the uranium ion adsorption equilibrium on ACF/PP-g-AN copolymers was 8 days and the optimal pH was 8. The adsorption capacities of ACF/PP-g-AN copolymers increased according to the content of amidoxime and were not varied even after more than 10 times of regeneration.

  • PDF

Optimization of Pan Bread Prepared with Ramie Powder and Preservation of Optimized Pan Bread Treated by Gamma Irradiation during Storage

  • Lee, Hee-Jeong;Joo, Na-Mi
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.1
    • /
    • pp.53-63
    • /
    • 2012
  • This study was conducted to develop an optimal composite recipe for pan bread with ramie powder that has high sensory approval with all age groups and to estimate the DPPH radical scavenging activity and the pan bread shelf life after gamma irradiation. The sensory evaluation results showed significant differences in flavor (p<0.05), appearance (p<0.01), color (p<0.01), moistness (p<0.01), and overall quality (p<0.05) based on the amount of ramie powder added. As a result, the optimum formulations by numerical and graphical methods were calculated to be as follows: ramie powder 2.76 g (0.92%) and water 184.7 mL. Optimized pan bread with ramie powder and white pan bread were irradiated with gamma-rays at doses of 0, 10, 15, and 20 kGy. The total bacterial growth increased with the longer storage time and the least amount of ramie powder added. Consequently, these results suggest that the addition of ramie powder to pan bread provides added value to the bread in terms of increased shelf life.

Optimal Electropolishing Condition of Austenitic Stainless Steel Specimens for Slow Strain Rate Tensile Testing (오스테나이트 스테인리스강 저속인장시험편의 최적 전해연마 특성)

  • Min-Jae Choi;Eun-Byeoul Jo;Dong-Jin Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.457-465
    • /
    • 2023
  • Irradiation-assisted stress corrosion cracking (IASCC) is one of the main degradation mechanisms of austenitic stainless steels, which are used as reactor internal materials. Slow strain rate testing (SSRT) has been widely applied to evaluate the IASCC initiation characteristics of proton-irradiated tensile specimens. Tensile specimens require low surface roughness for micro-crack observation, and electropolishing is the most important specimen pre-treatment process used for this. In this study, optimal electropolishing conditions were examined through analyzing results of polarization experiments and surface roughness measurements after electropolishing. Corrosion cell and electropolishing equipment were fabricated for polarization tests and electropolishing experiments using SSRT specimens. The experimental parameters were electropolishing time, current density, electrolyte temperature, and stirring speed. The optimal electropolishing conditions for SSRT tensile specimens made of type 316 stainless steel were evaluated as a polishing time of 180 seconds, a current density of 0.15 A/cm2, an electrolyte temperature of 60 ℃, and a stirring speed of 200 RPM.

Determination the optimum extraction method for saponin lancemasides in Codonopsis lanceolata (더덕 사포닌인 lancemasides의 최적 추출 방법 구명)

  • Lee, Min Ju;Nam, Ju Hee;Um, In Eeok;Kang, Chang Keun;Rho, Il Rae
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.103-108
    • /
    • 2019
  • This study was conducted to select the optimal extraction method of codonopsis lanceolata saponin. To investigate the lancemasides content depending on each extraction method, various extractions were performed: reflux (methanol and butanol), hot water, as well as ultrasonic bath (40 kHz; continuous irradiation/interval irradiation) and ultrasonicator (20 kHz) extractions. From the result, the overall lancemasides content were the highest in ultrasonic bath (MeOH; continuous irradiation) extraction, followed by ultrasonic bath (water; continuous irradiation)>ultrasonic bath (MeOH; interval irradiation)>ultrasonicator (MeOH)>hot water>MeOH reflux>BuOH reflux extractions in that order. Sample drying method prior to ultrasonic bath extraction was more effective shade drying than freeze drying. Effective duration and temperature of extraction was 2 hr at $64^{\circ}C$. And ingredient change diverted from aster saponin Hb to lancemasides was identified by extraction condition such as extraction time and temperature.