• Title/Summary/Keyword: optimal feed rate

Search Result 230, Processing Time 0.027 seconds

Impact of phase feeding: effects on the growth performance of sows and their litter characteristics

  • Sureshkumar, Shanmugam;Kim, In Ho
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.2
    • /
    • pp.265-272
    • /
    • 2021
  • A total of fourteen primiparous sows' (Landrace × Yorkshire) were used to determine the effects of two patterns of feed intake during early gestation on the growth performance and litter characteristics in sows. Daily feed intake from day 5 to 112 of gestation for parity 1 sows was 2.2 kg·d-1 of feed offered with the exception of seven sows who were offered 3.2 kg·d-1 from day 90 to 108 of gestation (TRT A) or 2.5 kg·d-1 (d 5 - 60) and 2 kg·d-1 (d 60 - 90) of feed with the exception of seven sows who were offered 3.5 kg·d-1 from day 90 to 108 of gestation (TRT B). The different feed intake patterns in early gestation did not have a significant effect on body weight, backfat thickness, or body condition score during, before, and after farrowing (p > 0.05) respectively. However, initial to d 60, backfat thickness difference was significantly improved by TRT B patterns of feed intake during early gestation. In addition, during the overall experiment, average daily feed intake was significantly enhanced for sows in the dietary TRT B group feed intake pattern (p = 0.0001). The fecal score during day 90 was significantly reduced (p = 0.0132) in sows fed with TRT B feed intake pattern. Litter size, litter survival rate, and initial weight showed no significant differences with different feed efficiency of gestating sows. In summary, the results indicate that the 2.5 kg·d-1 gestation intake pattern allowed gestating sows to obtain optimal performance.

Determination of Optimal Cutting Conditions Based on the Relationship between Tool Grade and Workpiece Material (피삭재와 공구재종의 상관관계에 근거한 적정 절삭조건의 결정)

  • 한동원;고성림;이건우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.79-89
    • /
    • 1998
  • In determining optimal cutting condition for face milling operation, tool wear is an important factor. For the purpose of establishing the relationship between various machining factors and tool wear, cutting tests have been performed. As a result, hardness and chemical composition of workpiece material, chemical composition and grain size of cutting tool and cutting speed have been selected as machining factors. In addition, relationship between feed rate and workpiece hardness has been observed. Prior to utilizing cutting conditions recommended by ‘Machining Data Handbook(MDH)’ as a knowledge base, an analysis for the validity of the MDH has been provided. Based on this analysis, tool life criteria applied by MDH has been modified. Finally, using MDH recommended data for neural network trainning, the results from the trained neural network for optimal cutting condition for some given workpiece and cutting tool can be used as reference cutting conditions.

  • PDF

Optimal Parameter Design for Al/SiC Composites using Design of Experiments (실험계획법에 의한 Al/SiC 복합재료의 최적공정 설계)

  • Lee, K.J.;Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.72-76
    • /
    • 2011
  • In this work, the parameter optimization for thermal-sprayed Al/SiC composites have been designed by $L_9(3^4)$ orthogonal array and analysis of variance(ANOVA). Al/SiC composites were fabricated by flame spray process on steel substrate. The hardness of composites were measured using micro-vickers hardness tester, and these results were analyzed by ANOVA. The ANOVA results showed that the oxygen gas flow, powder feed rate and spray distance affect on the hardness of the Al/SiC composites. From the ANOVA results, the optimal combination of the flame spray parameters could be extracted. It was considered that experimental design using orthogonal array and ANOVA was efficient to determine optimal parameter of thermal-sprayed Al/SiC composites.

Determination of Optimal Machining Parameters Using Genetic Algorithm (유전자 알고리즘을 이용한 최적의 가공 조건 결정)

  • Choi, K.H.;Yook, S.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.4
    • /
    • pp.63-68
    • /
    • 1999
  • The determination of the optimal machining parameters in metal cutting, such as cutting speed, feed rate, and depth of cut, is an important aspect in an economic manufacturing process. The main objective in general is either to minimize the production cost or to maximize the production rate. Also there are constraints on all the machining operations which put restrictions on the choice of the machining parameters. In this paper as an objective function the production cost is considered with two constraints, surface finish and cutting power. Genetic Algorithm is applied to determine the optimum machining parameters, and the effectiveness of the applied algorithm is demonstrated by means of an example, turning operation.

  • PDF

A Study on the Characteristics of Chamdrilling for SCM415 Steel (SCM415강에 대한 캄드릴링 특성연구)

  • Kim, Jin-su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.27-34
    • /
    • 2021
  • This study analyzes machining characteristics and presents optimal cutting conditions by measuring the surface roughness, dimensional accuracy, and dimension straightness based on the feed rate after processing the inner diameter hall of SCM415 steel using an automatic CNC(Computerized Numerical Control) lathe. The testing material was cut using an 11.8 mm-diameter Chamdrill after mounting the 32 mm-diameter round bar on an automatic CNC lathe. The cut depth was set at 3 mm, and the cutting speed was fixed at 1500 rpm. The surface roughness, dimensional accuracy, and dimension straightness of 15 testings were measured by changing the feed rate to 0.05, 0.1, and 0.15 mm/rev, respectively. It was difficult to process more than 15 tests during the maching due to noise or break. Additionally, the optimum cutting of SCM415 steel showed excellent surface roughness in the 10th and 11th of testing at cutting speed and feed speed of 1500 rpm and 0.05 mm/rev, respectively. The dimensional accuracy was measured in three dimensions after drilling, which showed good results with an average range of 0.0138-0.0208 mm. Moreover, the lower the feed speed, the higher the accuracy. Additionally, the measurement results of the dimensional straightness showed that the straightness is the straightness was the best at the 1th and 2th cutting regardless of the feed speed.

Large-Scale PSA Process for Hydrogen Separation from Gas Mixture (혼합가스에서 수소분리를 위한 애용량 PSA공정)

  • Choi, Dae-Ki;Jin, Yin-Zhe;Kang, Seok-Hyun;Row, Kyung-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.8-20
    • /
    • 2006
  • For large scale separation hydrogen from different mixing ratio(60/40 and 80/20 vol.%) of hydrogen and methane $1Nm^3/hr$ and $4Nm^3/hr$ 2bed-6step pressure swing adsorption(PSA) process was used, respectively. The effects of the feed gas pressure, adsorption time, the feed flow rate and the P/F(purge to feed) ratio on the process performance were evaluated. In the $1Nm^3/hr$ PSA results, 11 atm adsorption pressure and 0.10 P/F ratio might be optimal values to obtain more than 75 % recovery and 99 % purity hydrogen in these processing. The optimum feed flowrate was 22 LPM and 17 LPM in the ratio 60/40 and 80/20, respectively. In the $4Nm^3/hr$ PSA results, 10 atm adsorption pressure might be simulated values to obtain more than 80 % recovery and 99 % purity hydrogen in these processing.

Multi response optimization of surface roughness in hard turning with coated carbide tool based on cutting parameters and tool vibration

  • Keblouti, Ouahid;Boulanouar, Lakhdar;Azizi, Mohamed Walid.;Bouziane, Abderrahim
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.395-405
    • /
    • 2019
  • In the present work, the effects of cutting parameters on surface roughness parameters (Ra), tool wear parameters (VBmax), tool vibration (Vy) and material removal rate (MRR) during hard turning of AISI 4140 steel using coated carbide tool have been evaluated. The relationships between machining parameters and output variables were modeled using response surface methodology (RSM). Analysis of variance (ANOVA) was performed to quantify the effect of cutting parameters on the studied machining parameters and to check the adequacy of the mathematical model. Additionally, Multi-objective optimization based desirability function was performed to find optimal cutting parameters to minimize surface roughness, and maximize productivity. The experiments were planned as Box Behnken Design (BBD). The results show that feed rate influenced the surface roughness; the cutting speed influenced the tool wear; the feed rate influenced the tool vibration predominantly. According to the microscopic imagery, it was observed that adhesion and abrasion as the major wear mechanism.

Estimation of the Reactor Volume Ratio for Nitrogen Removal in Step-Feed Activated Sludge Process (단계 주입 활성슬러지공법에서 질소제거를 위한 반응기 용적비 추정)

  • Lee, Byung-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.130-136
    • /
    • 2006
  • Theoretical total nitrogen removal efficiency and reactor volume ratio in oxic-anoxic-oxic system can be found by influent water quality in this study. The influent water quality items for calculation were ammonia, nitrite, nitrate, alkalinity, and COD which can affect nitrification and denitrification reaction. Total nitrogen removal efficiency depends on influent allocation ratio. The total nitrogen removal follows the equation of 1/(1+b). Optimal reactor volume ratio for maximum TN removal efficiency was expressed by those influent water quality and nitrification/denitrification rate constants. It was possible to expect optimal reactor volume ratio by the calculation with the standard deviation of ${\pm}14.2$.

Studies on Precision Bending of Motor Spring (모터스프링의 정밀 벤딩 성형에 관한 연구)

  • Park, S.J.;Lee, S.G.;Kim, D.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.366-372
    • /
    • 2016
  • Recently, the amount of spring usage is on the increase in the automotive and aircraft parts industries as well as home appliances. Manufacture of spring reflects a need for diversification, mass production and high precision. Therefore it is very important to know the bending method and forming technique according to the shape of spring. In this study, to find the optimal bending method for the motor spring, the FE-simulation was executed using orthogonal array. The design parameters are wire length, length of vibration and feed rate. Then, the optimal combination of design parameters was suggested using ANN technique.

Performance Evaluation of a Closed-Loop Pressure Retarded Membrane Distillation for Brackish Water Desalination and Power Generation (기수담수화와 전력 생산을 위한 폐루프형 압력 지연식 막 증류 공정의 성능 평가)

  • Cho, Gyu Sang;Lee, Jun-Seo;Park, Kiho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.525-534
    • /
    • 2022
  • In this study, we investigated the applicability and optimal operating strategy of a closed-loop pressure retarded membrane distillation (PRMD) for brackish water desalination. For effective operation with net power generation, high temperature of heat source over 90 ℃ and feed flow rate at 0.6 kg/s are recommended. At 3 g/L of feed concentration, the average permeate flux and net energy density showed 8.04 kg/m2/hr and 2.56 W/m2, respectively. The average permeate flux and net energy density were almost constant in the range of feed concentration from 1 to 3 g/L. Compared to the case with seawater feed, the PRMD with brackish water feed showed higher average permeate flux and net energy density. Thus, PRMD application using brackish water feed can be more effective than that using seawater feed in terms of power generation.