• Title/Summary/Keyword: optimal failure criteria

Search Result 45, Processing Time 0.031 seconds

Optimal failure criteria to improve Lubliner's model for concrete under triaxial compression

  • Lei, Bo;Qi, Taiyue;Wang, Rui;Liang, Xiao
    • Computers and Concrete
    • /
    • v.28 no.6
    • /
    • pp.585-603
    • /
    • 2021
  • The validation based on the experimental data demonstrates that the concrete strength under triaxial compression (TC) is overestimated by Lubliner-Oller strength criterion (SC) but underestimated by Lubliner-Lee SC in ABAQUS. Moreover, the discontinuous derivatives of failure criterion exists near the unexpected breakpoints. Both resulted from the piecewise linear meridians of the original Lubliner SC with constants γ. Following the screen for the available failure criteria to determine the model parameter γ of Lubliner SC, Menétrey-Willam SC (MWSC) is considered the most promising option with a reasonable aspect ratio Kc but no other strength values required and only two new model parameters introduced. The failure surface of the new Lubliner SC based on MWSC (Lubliner-MWSC) is smooth and has no breakpoints along the hydrostatic pressure (HP) axis. Finally, predicted results of Lubliner-MWSC are compared with other concrete failure criteria and experimental data. It turns out that the Lubliner-MWSC can represent the concrete failure behavior, and MWSC is the optimal choice to improve the applicability of the concrete damaged plasticity model (CDPM) under TC in ABAQUS.

Multiple failure criteria-based fragility curves for structures equipped with SATMDs

  • Bakhshinezhad, Sina;Mohebbi, Mohtasham
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.463-475
    • /
    • 2019
  • In this paper, a procedure to develop fragility curves of structures equipped with semi-active tuned mass dampers (SATMDs) considering multiple failure criteria has been presented while accounting for the uncertainties of the input excitation, structure and control device parameters. In this procedure, Latin hypercube sampling (LHS) method has been employed to generate 30 random SATMD-structure systems and nonlinear incremental dynamic analysis (IDA) has been conducted under 20 earthquakes to determine the structural responses, where failure probabilities in each intensity level have been evaluated using Monte Carlo simulation (MCS) method. For numerical analysis, an eight-story nonlinear shear building frame with bilinear hysteresis material behavior has been used. Fragility curves for the structure equipped with optimal SATMDs have been developed considering single and multiple failure criteria for different performance levels and compared with that of uncontrolled structure as well as structure controlled using passive tuned mass damper (TMD). Numerical analysis has shown the capability of SATMDs in significant enhancement of the seismic fragility of the nonlinear structure. Also, considering multiple failure criteria has led to increasing the fragility of the structure. Moreover, it is observed that the influence of the uncertainty of input excitation with respect to the other uncertainties is considerable.

Design of Cylindrical Composite Shell for Optimal Dimensions (최적 단면 치수를 가지는 복합재료 중공빔의 설계)

  • Chun Heong-Jae;Park Hyuk-Sung;Choi Yong-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.219-226
    • /
    • 2005
  • In this study, the problem formulation and solution technique using genetic algorithms for design optimization of laminate composite cylindrical beam section are presented. The hollow cylindrical beams we usually used in the wheel chair. If the weight of wheel chair is reduced, it will lead to huge improvement in passenger's mobility and comfort. In this context, the replacement of steel by high performance and light weight composite material along with optimal design will be a good contribution in the process of weight reduction of a wheel chair. An artificial genetics approach for the design optimization of hollow cylindrical composite beam is presented. On applying the genetic algorithm, the optimal dimensions of hollow cylindrical composite beams which have equivalent rigidities to those of corresponding hollow cylindrical steel beams are obtained. Also structural analysis is conducted on the entire wheel chair structure incorporating Tsai-Wu failure criteria. The maximum Tsai-Wu failure criteria index is $0.192\times10^{-3}$ which is moth less than value of 1.00 indicating no failure is observed under excessive loading condition. It is found that the substitution of steel by composite material could reduce the weight of wheel chair up to 45%.

Catastrophe analysis of active-passive mechanisms for shallow tunnels with settlement

  • Yang, X.L.;Wang, H.Y.
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.621-630
    • /
    • 2018
  • In the note a comprehensive and optimal passive-active mode for describing the limit failure of circular shallow tunnel with settlement is put forward to predict the catastrophic stability during the geotechnical construction. Since the surrounding soil mass around tunnel roof is not homogeneous, with tools of variation calculus, several different curve functions which depict several failure shapes in different soil layers are obtained using virtual work formulae. By making reference to the simple-form of Power-law failure criteria based on numerous experiments, a numerical procedure with consideration of combination of upper bound theorem and stochastic medium theory is applied to the optimal analysis of shallow-buried tunnel failure. With help of functional catastrophe theory, this work presented a more accurate and optimal failure profile compared with previous work. Lastly the note discusses different effects of parameters in new yield rule and soil mechanical coefficients on failure mechanisms. The scope of failure block becomes smaller with increase of the parameter A and the range of failure soil mass tends to decrease with decrease of unit weight of the soil and tunnel radius, which verifies the geomechanics and practical case in engineering.

Design Optimization of Double-array Bolted Joints in Cylindrical Composite Structures

  • Kim, Myungjun;Kim, Yongha;Kim, Pyeunghwa;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.332-340
    • /
    • 2016
  • A design optimization is performed for the double-bolted joint in cylindrical composite structures by using a simplified analytical method. This method uses failure criteria for the major failure modes of the bolted composite joint. For the double-bolted joint with a zigzag arrangement, it is necessary to consider an interaction effect between the bolt arrays. This paper proposes another failure mode which is determined by angle and distance between two bolts in different arrays and define a failure criterion for the failure mode. The optimal design for the double-bolted joint is carried out by considering the interactive net-tension failure mode. The genetic algorithm (GA) is adopted to determine the optimized parameters; bolt spacing, edge distance, and stacking sequence of the composite laminate. A purpose of the design optimization is to maximize the burst pressure of the cylindrical structures by ensuring structural integrity. Also, a progressive failure analysis (PFA) is performed to verify the results of the optimal design for the double-bolted joint. In PFA, Hashin 3D failure criterion is used to determine the ply that would fail. A stiffness reduction model is then used to reduce the stiffness of the failed ply for the corresponding failure mode.

A Bayesian approach to maintenance strategy for non-renewing free replacement-repair warranty

  • Jung, K.M.
    • International Journal of Reliability and Applications
    • /
    • v.12 no.1
    • /
    • pp.41-48
    • /
    • 2011
  • This paper considers the maintenance model suggested by Jung and Park (2010) to adopt the Bayesian approach and obtain an optimal replacement policy following the expiration of NFRRW. As the criteria to determine the optimal maintenance period, we use the expected cost during the life cycle of the system. When the failure times are assumed to follow a Weibull distribution with unknown parameters, we propose an optimal maintenance policy based on the Bayesian approach. Also, we describe the revision of uncertainty about parameters in the light of data observed. Some numerical examples are presented for illustrative purpose.

  • PDF

Analysis of Criteria for Selecting Load Redistribution Algorithm for Fault-Tolerant Distributed System (분산 시스템의 결함시 재분배 알고리즘의 선정기준을 위한 특성 분석)

  • 최병갑
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.1
    • /
    • pp.89-98
    • /
    • 1994
  • In this paper, a criteria for selecting an appropriate load redistribution algorithm is devised so that a fault-tolerance distributed system can operte at its optimal efficience. To present the guideline for selecting redistributing algorithms, simulation models of fault-tolerant system including redistribution algorithms are developed using SLAM II. The job arrival rate, service rate, failure and repair rate of nodes, and communication delay time due to load migration are used as parameters of simulation. The result of simulation shows that the job arrival rate and the failure rate of nodes are not deciding factors in affecting the relative efficiency of algorithms. Algorithm B shows relatively a consistent performance under various environments, although its performance is between those of other algorithms. If the communication delay time is longer than average job processing time, the performance of algorithm B is better than others. If the repair rate is relatively small or communication delay time is longer than service time, algorithm A leads to good performance. But in opposite environments, algorithm C is superior to other algorithms.

  • PDF

An Analysis of Design Parameters and Optimal Design for Anchors with Wide CFRP Plate (대형 CFRP Plate용 정착구의 설계요소분석 및 최적설계)

  • Kim, Hyung-Joon;Chung, Heung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.102-112
    • /
    • 2020
  • In this study, in order to design a wedge-type anchor that can hold an wide carbon plate with a width of 100 mm or more that can be used in a bridge structure, the mechanical behaviors are evaluated based on the main design variables such as the angle of the wedge and the coefficient of friction between the guide and the wedge. The stress state of the carbon plate was calculated by numerical analysis method for each design variable, and the performance of the anchor in the critical state was evaluated according to the failure criteria for composite material, and the optimal design specifications of the anchor were determined based on numerical results. The performance of the optimally designed anchor was verified through actual experiments, and the results of this study are considered to be useful for the optimal design of the CFRP plate anchor to reinforce large structures.

Multicriteria shape design of a sheet contour in stamping

  • Oujebbour, Fatima-Zahra;Habbal, Abderrahmane;Ellaia, Rachid;Zhao, Ziheng
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.187-193
    • /
    • 2014
  • One of the hottest challenges in automotive industry is related to weight reduction in sheet metal forming processes, in order to produce a high quality metal part with minimal material cost. Stamping is the most widely used sheet metal forming process; but its implementation comes with several fabrication flaws such as springback and failure. A global and simple approach to circumvent these unwanted process drawbacks consists in optimizing the initial blank shape with innovative methods. The aim of this paper is to introduce an efficient methodology to deal with complex, computationally expensive multicriteria optimization problems. Our approach is based on the combination of methods to capture the Pareto Front, approximate criteria (to save computational costs) and global optimizers. To illustrate the efficiency, we consider the stamping of an industrial workpiece as test-case. Our approach is applied to the springback and failure criteria. To optimize these two criteria, a global optimization algorithm was chosen. It is the Simulated Annealing algorithm hybridized with the Simultaneous Perturbation Stochastic Approximation in order to gain in time and in precision. The multicriteria problems amounts to the capture of the Pareto Front associated to the two criteria. Normal Boundary Intersection and Normalized Normal Constraint Method are considered for generating a set of Pareto-optimal solutions with the characteristic of uniform distribution of front points. The computational results are compared to those obtained with the well-known Non-dominated Sorting Genetic Algorithm II. The results show that our proposed approach is efficient to deal with the multicriteria shape optimization of highly non-linear mechanical systems.

Elective neck treatment in clinically node-negative paranasal sinus carcinomas: impact on treatment outcome

  • Lee, Won Hee;Choi, Seo Hee;Kim, Se-Heon;Choi, Eun Chang;Lee, Chang Geol;Keum, Ki Chang
    • Radiation Oncology Journal
    • /
    • v.36 no.4
    • /
    • pp.304-316
    • /
    • 2018
  • Purpose: The indication of elective neck treatment (ENT) for clinically N0 (cN0) paranasal sinus (PNS) carcinoma remains unclear. We aimed to investigate different treatment outcomes regarding ENT and propose optimal recommendations for ENT. Materials and Methods: We identified patients with cN0 PNS carcinoma who underwent curative-intent treatment between 1992 and 2015. Survival outcomes and pattern of failure were compared between patients who received ENT and those who did not. We sought to identify significant patient or pathologic factors regarding treatment outcomes. Results: Among 124 patients meeting the inclusion criteria, 40 (32%) received ENT ('ENT (+) group') and 84 (68%) did not ('ENT (-) group'). With a median follow-up of 54 months, the 5-year overall survival (OS) was 67%, and the 5-year progression-free survival (PFS) was 45%. There was no significant difference between the ENT (+) and ENT (-) groups regarding OS (p = 0.67) and PFS (p = 0.50). Neither group showed a significantly different pattern of failure, including regional failure (p = 0.91). There was no specific benefit, even in the subgroups analysis by tumor site, histologic type, and T stage. Nevertheless, patients who ever had regional and/or distant failure showed significantly worse prognosis. Conclusion: ENT did not significantly affect the survival outcome or pattern of failure in patients with cN0 PNS carcinomas, showing that ENT should not be generalized in this group. However, further discussion on the optimal strategy for ENT should continue because of the non-negligible regional failure rates and significantly worse prognosis after regional failure events.