Browse > Article
http://dx.doi.org/10.12989/cac.2021.28.6.585

Optimal failure criteria to improve Lubliner's model for concrete under triaxial compression  

Lei, Bo (Key Laboratory of Transportation Tunnel Engineering, Ministry of Education)
Qi, Taiyue (Key Laboratory of Transportation Tunnel Engineering, Ministry of Education)
Wang, Rui (School of Engineering, Sichuan Normal University)
Liang, Xiao (Key Laboratory of Transportation Tunnel Engineering, Ministry of Education)
Publication Information
Computers and Concrete / v.28, no.6, 2021 , pp. 585-603 More about this Journal
Abstract
The validation based on the experimental data demonstrates that the concrete strength under triaxial compression (TC) is overestimated by Lubliner-Oller strength criterion (SC) but underestimated by Lubliner-Lee SC in ABAQUS. Moreover, the discontinuous derivatives of failure criterion exists near the unexpected breakpoints. Both resulted from the piecewise linear meridians of the original Lubliner SC with constants γ. Following the screen for the available failure criteria to determine the model parameter γ of Lubliner SC, Menétrey-Willam SC (MWSC) is considered the most promising option with a reasonable aspect ratio Kc but no other strength values required and only two new model parameters introduced. The failure surface of the new Lubliner SC based on MWSC (Lubliner-MWSC) is smooth and has no breakpoints along the hydrostatic pressure (HP) axis. Finally, predicted results of Lubliner-MWSC are compared with other concrete failure criteria and experimental data. It turns out that the Lubliner-MWSC can represent the concrete failure behavior, and MWSC is the optimal choice to improve the applicability of the concrete damaged plasticity model (CDPM) under TC in ABAQUS.
Keywords
breakpoints; concrete strength model; linear meridian; optimal failure criteria; triaxial compression;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Hsieh, S.S, Ting, E.C. and Chen, W.F. (1982), "A plasticity-fracture model for concrete", Int. J. Solid. Struct., 18(3), 181-197. https://doi.org/10.1016/0020-7683(82)90001-4.   DOI
2 Imran, I. and Pantazopoulou, S.J. (1996), "Experimental study of plain concrete under triaxial stress", ACI Mater. J., 93(6), 589-601. https:/doi.org/10.14359/9865.   DOI
3 Kim, S.M. and Al-Rub, R.K.A. (2011), "Meso-scale computational modeling of the plastic-damage response of cementitious composites", Cement Concrete Res., 41(3), 339-358. https://doi.org/10.1016/j.cemconres.2010.12.002.   DOI
4 Kupfer, H., Hilsdorf, H.K. and Rusch, H. (1969), "Behavior of concrete under biaxial stresses", ACI Mater. J., 66(8), 656-666. http://doi.org/10.1061/JMCEA3.0001789.   DOI
5 Lade, P.V. (1982), "Three-parameter failure criterion for concrete", J. Eng. Mech. ASCE, 108(5), 850-863. https://doi.org/10.1061/JMCEA3.0002874.   DOI
6 Lahlou, K., Aictin, P.C. and Chaallal, O. (1993), "Behaviour of high-strength concrete under confined stresses", Cement Concrete Compos., 14(3), 185-193. https://doi.org/10.1016/0958-9465(92)90012-K.   DOI
7 Ansari, F. and Li, Q.B. (1998), "High-strength concrete subjected to triaxial compression", ACI Mater. J., 95(6), 747-755. https://doi.org/10.14359/420.   DOI
8 Candappa, D.C., Sanjayan, J.G. and Setunge, S. (2001), "Complete triaxial stress-strain curves of high-strength concrete", J. Mater. Civil Eng., 13(3), 209-215. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:3(209).   DOI
9 Cervenka, J. and Papanikolaou, V.K. (2008), "Three dimensional combined fracture-plastic material model for concrete", Int. J. Plast., 24(12), 2192-2220. https://doi.org/10.1016/j.ijplas.2008.01.004.   DOI
10 Chen, W.F. and Han, D.J. (1988), Plasticity for Structural Engineers, Springer-Verlag, New York, NY, USA.
11 Grassl, P. and Jirasek, M. (2006), "Damage-plastic model for concrete failure", Int. J. Solid. Struct., 43(22), 7166-7196. https://doi.org/10.1016/j.ijsolstr.2006.06.032.   DOI
12 Chinn, J. and Zimmerman, R.M. (1965), "Behaviour of plain concrete under various high triaxial compression loading conditions", Technical Report No. WL TR 64-163, Air Force Weapons Laboratory, New Mexico, USA.
13 Ding, F. and Yu, Z. (2006), "Strength criterion for plain concrete under multiaxial stress based on damage Poisson's ratio", Acta Mech. Solid. Sinica, 19(4), 307-315. https://doi.org/10.1007/s10338-006-0637-1.   DOI
14 Etse, G. and Willam, K. (1994), "Fracture energy formulation for inelastic behavior of plain concrete", J. Eng. Mech., 120(9), 1983-2011. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:9(1983).   DOI
15 Ottosen, N.S. (1977), "A failure criterion for concrete", J. Eng. Mech., 103(4), 527-535. https://doi.org/10.1061/JMCEA3.0002248.   DOI
16 ABAQUS Inc. (2014), ABAQUS User's Manual-Version 6.14.
17 Balmer, G.G. (1949), "Shearing strength of concrete under high triaxial stress-computation of mohrs envelope as a curve", Structural Research Laboratory Report No. SP-23, US Department of the Interior, Washington, D.C.
18 Cicekli, U., Voyiadjis, G.Z. and Al-Rub, R.K.A. (2007), "A plasticity and anisotropic damage model for plain concrete", Int. J. Plast., 23(10), 1874-1900. https://doi.org/10.1016/j.ijplas.2007.03.006.   DOI
19 Muthukumar, G. and Kumar, M. (2014), "Failure criteria of concrete-A review", Comput. Concrete, 14(5), 503-526. https://doi.org/10.12989/cac.2014.14.5.503.   DOI
20 Oller, S., Onate, E., Oliver, J. and Lubliner, J. (1990), "Finite element non-linear analysis of concrete structures using a "plastic-damage model"", Eng. Fract. Mech., 35(1-3), 219-231. https://doi.org/10.1016/0013-7944(90)90200-Z.   DOI
21 Papanikolaou, V.K. and Kappos, A.J. (2007), "Confinement-sensitive plasticity constitutive model for concrete in triaxial compression", Int. J. Solid. Struct., 44(21), 7021-7048. https://doi.org/10.1016/j.ijsolstr.2007.03.022.   DOI
22 Pisano, A.A., Fuschi, P. and De Domenico, D. (2013), "A kinematic approach for peak load evaluation of concrete elements", Comput. Struct., 119(4), 125-139. https://doi.org/10.1016/j.compstruc.2012.12.030.   DOI
23 Hidayat, B.A., Hu, H.T., Hsiao, F.P., Han, A.L., Sosa, L., Chan, L.Y. and Haryanto, Y. (2021), "Seismic behavior and failure modes of non-ductile three-story reinforced concrete structure: A numerical investigation", Comput. Concrete, 27(5), 457-472. https://doi.org/10.12989/cac.2021.27.5.457.   DOI
24 Podgorski, J. (1985), "General failure criterion for isotropic media", J. Eng. Mech., 111(2), 188-201. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:2(188).   DOI
25 Mohammadi, M. and Wu, Y.F. (2019), "Modified plastic-damage model for passively confined concrete based on triaxial tests", Compos. Part B Eng., 159(2), 211-223. https://doi.org/10.1016/j.compositesb.2018.09.074.   DOI
26 Chen, Y., Feng, J. and Yin, S. (2012), "Compressive behavior of reinforced concrete columns confined by multi-spiral hoops", Comput. Concrete, 9(5), 341-355. https://doi.org/10.12989/cac.2012.9.5.341.   DOI
27 Li, Q.B. and Ansari, F. (2000), "High-strength concrete in triaxial compression by different sizes of specimens", ACI Mater. J., 97(6), 684-689.
28 Lin, G. and Teng, J.G. (2017), "Three-dimensional finite-element analysis of FRP-confined circular concrete columns under eccentric loading", J. Compos. Constr., 21(4), 04017003. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000772.   DOI
29 Wang, C.Z., Guo, Z.H. and Zhang, X.Q. (1987), "An experimental investigation of biaxial and triaxial compressive concrete strength", ACI Mat. J., 84(2), 92-100. https://doi.org/10.1186/1532-429X-11-S1-O73.   DOI
30 Willam, K.J. and Warnke, E.P. (1975), "Constitutive model for the triaxial behavior of concrete", IABSE Proceedings International association of bridge and structural engineers, Bergamo, Italy, May.
31 Jiang, L., Huang, D. and Xie, N. (1991), "Behaviour of concrete under triaxial compressive-compressive-tensile stresses", ACI Mater. J., 88(2), 181-185. https://doi.org/10.1016/0043-1648(91)90094-B.   DOI
32 Kotsovos, M.D. (1979), "A mathematical description of the strength properties of concrete under generalized stress", Mag. Concrete Res., 31(128), 151-158. https://doi.org/10.1680/macr.1979.31.108.151.   DOI
33 Ebadi-Jamkhaneh, M., Homaioon-Ebrahimi, A. and Kontoni, D.P.N. (2021), "Numerical finite element study of strengthening of damaged reinforced concrete members with carbon and glass FRP wraps", Comput. Concrete, 28(2), 137-147. https://doi.org/10.12989/cac.2021.28.2.137.   DOI
34 Wu, J.Y., Li, J. and Faria, R. (2006), "An energy release rate-based plastic-damage model for concrete", Int. J. Solid. Struct., 43(3-4), 583-612. https://doi.org/10.1016/j.ijsolstr.2005.05.038.   DOI
35 Lade, P.V. (2014), "Estimating parameters from a single test for the three-dimensional failure criterion for frictional materials", J. Geotech. Geoenvir., 140(8), 04014038. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001137.   DOI
36 Liu, J. and Foster, S.J. (2000), "3-D finite element model for confined concrete structures", Comput. Struct., 77, 441-451. https://doi.org/10.1016/S0045-7949(00)00007-9.   DOI
37 Mills, L.L. and Zimmerman, R.M. (1970), "Compressive strength of plain concrete under multiaxial loading conditions", ACI J. Proc., 67(10), 802-807. https://doi.org/10.14359/7310.   DOI
38 Newman, K. and Newman, J.B. (1971), "Failure theories and design criteria for plain concrete", Struct. Solid. Mech. Eng. Des., 963-995.
39 Launay, P. and Gachon, H. (1970), "Strain and ultimate strength of concrete under triaxial stresses", ACI Spec., 34(1), 269-282.
40 Raza, A. and Ahmad, A. (2020), "Reliability analysis of proposed capacity equation for predicting the behavior of steel-tube concrete columns confined with CFRP sheets", Comput. Concrete, 25(5), 383-400. https://doi.org/10.12989/cac.2020.25.5.383.   DOI
41 Ferrotto, M.F., Cavaleri, L. and Di Trapani, F. (2018), "FE modeling of Partially Steel-Jacketed (PSJ) RC columns using CDP model", Comput. Concrete, 22(2), 143-152. https://doi.org/10.12989/cac.2018.22.2.143.   DOI
42 Sirijaroonchai, K. (2009), "A macro-scale plasticity model for high performance fiber reinforced cement composites", Ph.D. Dissertation of Philosophy, University of Michigan, Ann Arbor, USA.
43 Richart, F.E., Brandtaeg, A. and Brown, R.L. (1928), A Study of the Failure of Concrete under Combined Compressive Stresses, University of Illinois, Engineering Experiment Station, Urbana, USA.
44 Sarikaya, A. and Erkmen, R.E. (2019), "A plastic-damage model for concrete under compression", Int. J. Mech. Sci., 150(1), 584-593. https://doi.org/10.1016/j.ijmecsci.2018.10.042.   DOI
45 Seow Puay Eng, C. (2006), "A unified failure criterion for normal, high-strength and steel fibre-reinforced concrete", Ph.D. Dissertation of Philosophy, National University of Singapore, Singapore.
46 Sfer, D., Carol, I. and Gettu, R. (2002), "Study of the behavior of concrete under triaxial compression", J. Eng. Mech., 128(2), 156-163. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:2(156).   DOI
47 Shahbeyk, S., Moghaddam, M.Z. and Safarnejad, M. (2017), "A physically consistent stress-strain model for actively confined concrete", Comput. Concrete, 20(1), 85-97. https://doi.org/10.12989/cac.2017.20.1.085.   DOI
48 Taliercio, A.L.F. and Gobbi, E. (1997), "Effect of elevated triaxial cyclic and constant loads on the mechanical properties of plain concrete", Mag. Concrete Res., 49(181), 353-365. https://doi.org/10.1680/macr.1997.49.181.353.   DOI
49 Tasuji, M.E. and Nilson, A.H. (1978), "Stress-strain response and fracture of concrete in biaxial loading", ACI J., 75(7), 306-312. https:/doi.org/10.14359/10944.   DOI
50 Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solid. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.   DOI
51 He, Z.J. and Song, Y.P. (2008), "Strength regularity and failure criterion of high-strength high-performance concrete under multiaxial compression", J. Southwest Jiaotong Univ., 16(2), 144-149. https://doi.org/cnki:sun:xnjy.0.2008-02-007.
52 Szwed, A. and Inez, K. (2020), "Yield condition for concrete under moderate hydrostatic pressure", J. Theor. Appl. Mech., 58(2), 325-338. https://doi.org/10.15632/jtam-pl/116578.   DOI
53 Kotsovos, M.D. (2015), Finite-Element Modelling of Structural Concrete: Short-Term Static and Dynamic Loading Conditions, CRC Press/Taylor and Francis, Boca Raton, FL, USA.
54 Saritas, A. and Filippou, F.C. (2009), "Numerical integration of a class of 3d plastic-damage concrete models and condensation of 3d stress-strain relations for use in beam finite elements", Eng. Struct., 31(10), 2327-2336. https://doi.org/10.1016/j.engstruct.2009.05.005.   DOI
55 Menetrey, P. and Willam, K.J. (1995), "Triaxial failure criterion for concrete and its generalization", ACI Struct. J., 92(3), 311-318. https://doi.org/10.14359/1132.   DOI
56 Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).   DOI
57 Voyiadjis, G.Z., Taqieddin, Z.N. and Kattan, P.I. (2008), "Anisotropic damage-plasticity model for concrete", Int. J. Plast., 24(10), 1946-1965. https://doi.org/10.1016/j.ijplas.2008.04.002.   DOI
58 Wu, S., Zhang, S., Guo, C. and Xiong, L. (2017), "A generalized non-linear failure criterion for frictional materials", Acta Geotech., 12(6), 1353-1371. https://doi.org/10.1007/s11440-017-0532-6.   DOI
59 Zhang, J. and Li, J. (2014), "Construction of homogeneous loading functions for elastoplastic damage models for concrete", Sci. China, 57(3), 490-500. https://doi.org/10.1007/s11433-013-5188-0.   DOI
60 Hany, N.F., Hantouche, E.G. and Harajli, M.H. (2016), "Finite element modeling of FRP-confined concrete using modified concrete damaged plasticity", Eng. Struct., 125(10), 1-14. https://doi.org/10.1016/j.engstruct.2016.06.047.   DOI
61 Yu, T., Teng, J.G., Wong, Y.L. and Dong, S.L. (2010), "Finite element modeling of confined concrete-II: Plastic-damage model", Steel Constr., 32(3), 680-691. https://doi.org/10.1016/j.engstruct.2009.11.013.   DOI
62 Du, X.L., Lu, D.C., Gong, Q.M. and Zhao, M. (2010), "Nonlinear unified strength criterion for concrete under three-dimensional stress states", J. Eng. Mech., 136(1), 51-59. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000055.   DOI
63 Alfarah, B., Lopez-Almansa, F. and Oller, S. (2017), "New methodology for calculating damage variables evolution in plastic damage model for RC structures", Eng. Struct., 132(2), 70-86. https://doi.org/10.1016/j.engstruct.2016.11.022.   DOI
64 Hobbs, D.W. (1970), "Strength and deformation properties of plain concrete subjected to combined stress-part 1: Strength results obtained on one concrete", Cement and Concrete Association Technical Report 42, 451, 1-12.
65 Richard, B., Ragueneau, F., Cremona, C. and Adelaide, L. (2010), "Isotropic continuum damage mechanics for concrete under cyclic loading: Stiffness recovery, inelastic strains and frictional sliding", Eng. Fract. Mech., 77(8), 1203-1223. https://doi.org/10.1016/j. engfracmech.2010.02.010.   DOI
66 Wu, J.Y. (2004), "The elastoplastic damage constitutive model of concrete based on the damage energy release rate and the application in structural non-linear analysis", Ph.D. Dissertation of Philosophy, Tongji University, Shanghai, China.
67 Xie, J., Elwi, A.E. and MacGregor, J.G. (1995), "Mechanical properties of three high-strength concretes containing silica fume", ACI Mater. J., 92(2), 135-145. https://doi.org/10.14359/9764.   DOI
68 Yu, M.H. and Li, J.C. (2012), Computational Plasticity: With Emphasis on the Application of The Unified Strength Theory, Springer Science and Business Media.
69 Chuanzhi, G.Z.W. (1991), "Investigation of strength and failure criterion of concrete under multi-axial stresses [J]", China Civil Eng. J., 3.
70 Grassl, P. et al. (2013), "CDPM2: A damage-plasticity approach to modelling the failure of concrete", Int. J. Solid. Struct., 50(24), 3805-3816. https://doi.org/10.1016/j.ijsolstr.2013.07.008.   DOI
71 Piscesa, B., Attard, M.M. and Samani, A.K. (2018), "3D Finite element modeling of circular reinforced concrete columns confined with FRP using plasticity based formulation", Compos. Struct., 194(6), 478-493. https://doi.org/10.1016/j.compstruct.2018.04.039.   DOI
72 Zhang, J. and Li, J. (2012), "Investigation into Lubliner yield criterion of concrete for 3D simulation", Eng. Struct., 44(11), 122-127. https://doi.org/10.1016/j.engstruct.2012.05.031.   DOI
73 Zheng, F., Wu, Z., Gu, C., Bao, T. and Hu, J. (2012), "A plastic damage model for concrete structure cracks with two damage variables", Sci. China Tech. Sci., 55(11), 2971-2980. https://doi.org/10.1007/s11431-012-4983-6.   DOI
74 Ozbakkaloglu, T., Gholampour, A. and Lim, J.C. (2016), "Damage-plasticity model for FRP-confined normal-strength and high-strength concrete", J. Compos. Constr., 20(6), 04016053. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000712.   DOI