Communications for Statistical Applications and Methods
/
제4권3호
/
pp.911-915
/
1997
The purpose of this paper is to consider the problem of selection of optimal smoothing parameter for kernel-type distribution function estimator, which asymptotically minimizes mean Hellinger distance.
In this paper, a practical quasi-optimal DOA(direction of arrival) estimator is proposed in order to develop a one-axis gimbaled ultrasonic source tracker for mobile robot applications. With help of the gimbal structure, the ultrasonic moving source tracking problem can be simply reduced to the DOA estimation. The DOA estimation is known as one of the representative long-pending nonlinear filtering problems, but the conventional nonlinear filters might be restrictive in many actual situations because it cannot guarantee the reliable performance due to the use of nonlinear signal model. This motivates us to reformulate the DOA estimation problem in the linear robust state estimation setting. Based on the assumption that the received ultrasonic signals are noisy sinusoids satisfying linear prediction property, a linear uncertain measurement model is newly derived. To avoid the DOA estimation performance degradation caused by the stochastic parameter uncertainty contained in the linear measurement model, the recently developed NCRKF (non-conservative robust Kalman filter) scheme [1] is utilized. The proposed linear DOA estimator provides excellent DOA estimation performance and it is suitable for real-time implementation for its linear recursive filter structure. The effectiveness of the suggested DOA estimation scheme is demonstrated through simulations and experiments.
제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
/
pp.344-347
/
1995
The standard estimation and filtering theory are well known and has recently been incorporated with the H$_{\infty}$ optimization techniques where the parametrizations of all estimators and filters are utilized. The issue of reducing its order is always of interest. This paper presents a method for synthesizing low-order stable state estimators. The method presented in this paper is based on the utilization of a free parameter function contained in the parametrization of all state estimators. The results obtained in the paper are compared with standard results on low-order estimators. Both results are shown to be the same in a sense of its orders, but the approaches taken are largely different. It is also shown in the paper that the method can easily and directly be extended to the Kalman filters and the H$_{\infty}$ (sub)optimal filters. Consequently, the orders of all state estimators, Kalman filters, and H$_{\infty}$ filters are shown to be reduced down to the number of states minus the number of outputs, respectively.ly.
An adaptive procedure in finite element analysis is presented by p-refinement of meshes in conjunction with a posteriori error estimator that is based on the recovery technique. In case of the recovery technique, the SPR(superconvergent patch recovery) approach has been modified for p-adaptive mesh refinement. The strategy of finding a nearly optimal distribution of polynomial degrees on a fixed finite element mesh is discussed such that a particular element has to be refined automatically to obtain an acceptable level of accuracy by increasing p-levels non-uniformly. To verify the proposed algorithm, the limit value approach is proposed which utilizes the exact strain energy computed from the extrapolation equation. A new pre-processor is developed for the p-version finite element program in which the vector graphic editor is used for the automatic generation of node connection and coordinate by halfedge solid data structure according to uniform or nonuniform p-distribution. The general 2-D algorithm is also developed to generate face modes and internal modes in accordance with different mesh types. The quality of the error estimator is investigated with the help of two mumerical examples. The results show that the sequences of p-distributions obtained by the proposed error indicator closely follow the optimal trajectory.
This paper proposes a quasi-optimal linear DOA (Direction-of-Arrival) estimator which is necessary for the development of a real-time robot auditory system tracking moving acoustic source. It is well known that the use of conventional nonlinear filtering schemes may result in the severe performance degradation of DOA estimation and not be preferable for real-time implementation. These are mainly due to the inherent nonlinearity of the acoustic signal model used for DOA estimation. This motivates us to consider a new uncertain linear acoustic signal model based on the linear prediction relation of a noisy sinusoid. Using the suggested measurement model, it is shown that the resultant DOA estimation problem is cast into the NCRKF (Non-Conservative Robust Kalman Filtering) problem [12]. NCRKF-based DOA estimator provides reliable DOA estimates of a fast moving acoustic source in spite of using the noise-corrupted measurement matrix in the filter recursion and, as well, it is suitable for real-time implementation because of its linear recursive filter structure. The computational efficiency and DOA estimation performance of the proposed method are evaluated through the computer simulations.
다중표적 추적시스템은 여러 개의 표적물을 동시에 추적한다. 표적물의 추적에는 일반적으로 칼만필터를 사용하게 된다. 칼만필터는 최적의 특성을 지니고 있지만, 많은 계산량을 요구하는 단점이 있다. 따라서 여러 개의 표적물을 동시에 추적하는 다중표적 추적시스템의 실시간 구현을 위하여 칼만필터 대신에 계산량이 적은 다른 예측기를 사용하기도 한다. 본 논문에서는 계산량을 줄이기 위하여 칼만필터에서 사용하는 시스템의 모델을 줄이는 방법을 사용하여 보았다. 표적물의 운동을 등속운동으로 가정하여 사용된 모델은 표적물의 추적능력을 지니면서도 그 계산량을 줄일 수 있었다. 간단한 시뮬레이션과 실제의 영상정보에 적용한 결과는 등속운동을 가정한 칼만필터가 원래의 좋은 특성을 유지하면서 계산량을 줄일 수 있어 다중표적 추적시스템에 유리하게 사용될 수 있음을 보여주었다.
FIR(Finite Impulse Response) filter is well known to be ideal for the finite time state-space model, but it requires much computation due to its inherent non-recursive structure especially when the measurement interval grows to a large extent. And often a fixed-lag smoother based on the finite time interval is needed to monitor the soundness of the system model and the measurement model, but the computation burden of FIR-type smoother imposes much restriction of its usage for real-time application. Conventional recursive forms of FIR estimator[1]-[4] could not be used for real time applications, since they are numerically unstable in their recursive equations. To cope with this problem, we suggest a stable recursive form FIR estimator(SRFIR) and its usefulness is demonstrated for designing the real-time fixed-lag smoother on the finite time window through an example of detection of rate bias in the anti-aircraft gun fire control system.
본 논문에서는 2 차원 심초음파도의 경계선 유사 영역에 대해 베이즈 추정기를 사용하여 경계선 검출을 위한 자동문턱 결정방법을 제안하고자 한다. 경계선 유사영역은 전처리과 정에서 흐려진 영상을 명확히 하는데 사용할 열비등방성 확산 방법의 전도계수로부터 얻어진다, 이러한 경계선 유사 영역에 대해 최적 문턱치를 선택하기 위해 베이즈 추정기가 사용되었다. 이 문턱치를 사용하여 영상을 이진화함으로서 심초음파도의 경계선을 자동 적으로 검출하게 된다. 마지막으로 본래의 심초음파도에 위에서 얻어진 경계선을 덧씌움으로써 경계선이 강조된 심초음파도를 얻을 수 있게 된다.
The vehicle attitude and sideslip is critical information to control the vehicle to prevent from unintended motion. Many of estimation strategy use bicycle model or IMU integration, but both of them have limits on application. The main purpose of this paper is development of vehicle orientation estimator which is robust to various vehicle state and road shape. The suggested estimator use 3-axis magnetometer, yaw rate sensor and lateral acceleration sensor to estimate three Euler angles of vehicle. The estimator is composed of two individual observers: First, comparing the known magnetic field and gravity with measured value, the TRIAD algorithm calculates optimal rotational matrix when vehicle is in static or quasi-static condition. Next, merging 3-axis magnetometer with inertial sensors, the extended Kalman filter is used to estimate vehicle orientation under dynamic condition. A validation through simulation tools, Carsim and Simulink, is performed and the results show the feasibility of the suggested estimation method.
근사분산을 최대화하는 least favorable한 ${\epsilon}$-contaminated 정규분포는, 중간 영역에서는 가우시안이나 그 외의 영역에서는 라플라시안 분포를 갖는다는 사실에 근거하여 본 논문에서는 이 확률분포 하에서 비선형 잡음제거 알고리즘을 유도하고 이의 성능을 확인한다. 제안 알고리즘은 위 잡음 환경에서 MLE(maximum likelihood estimator) 이며, efficacy를 최대화한다는 기준에서 최적임을 증명한다. 또한, 유도한 필터를 미리어드 필터와 결합함으로써 임펄스 잡음을 효과적으로 제거하기 위한 비선형 필터를 제안하고 이를 이론적으로 분석한 다음 ${\alpha}$-stable 확률분포를 갖는 잡음에 열화된 이미지를 이용하여 그 성능을 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.