• Title/Summary/Keyword: optimal distribution

Search Result 2,865, Processing Time 0.04 seconds

Optimal Power Distribution for an Electric Vehicle with Front In-line Rear In-wheel Motors (전륜 인라인 후륜 인휠 모터 적용 전기자동차의 최적 동력 분배)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.76-82
    • /
    • 2014
  • In this paper, an optimal power distribution algorithm is proposed for the small electric vehicle with front in-line and rear in-wheel motors. First, it is assumed that the vehicle driving torque and velocity are given conditions. And, an optimal problem is defined that finding the front and rear motor torques which minimizes the battery power. From the above optimization problem, the optimized front-rear motor torque distribution map is obtained. And, the vehicle simulations are performed to verify the performance of the optimal power distribution algorithm which is proposed in this study. The simulations are performed based on the federal urban driving schedule for two cases which are constant ratio power distribution, and optimal power distribution. From the simulation results, it is found that the optimal power distribution shows the 6.3% smaller battery energy consumption than the constant ratio power distribution.

Optimal Routing of Distribution Network Considering Reliability Indices (신뢰도 지수를 고려한 배전계통의 최적 전력전송경로 결정)

  • 신동환;노병권;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1073-1080
    • /
    • 1999
  • Optimal routing of distribution networks can be attained by keeping the line power capacity limit to handle load requirements, acceptable voltage at customer loads, and the reliability indices such as SAIFI, SAIDI, CAIDI, and ASAI limits. This method is composed of optimal loss reduction and optimal reliability cost reduction. The former is solved relating to the conductor resistance of all alternative routes, and the latter is solved relating to the failure rate and duration of each alternative route. The routing considering optimal loss only and both optimal loss and optimal reliability cost are compared in this paper. The case studies with 10 and 24 bus distribution networks showed that reliability cost should be considered as well as loss reduction to achieve the optimal routing in the distribution networks.

  • PDF

Synthetically Optimal Tie Switches Selection Algorithm Considering Important Elements in Distribution Power System (배전계통 운영의 중요요소들을 고려한 상시연계점 선정 종합 최적화 알고리즘)

  • Kim, June-Ho;Lim, Hee-Taek;Yu, Nam-Cheol;Lim, Il-Hyung;Choi, Myeon-Song;Lee, Seung-Jae;Ha, Bok-Nam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2079-2088
    • /
    • 2009
  • The optimal operation in distribution system is to select tie switches considering important elements(Load balance, Loss minimization, Voltage drop, Restoration index..) in distribution system. Optimal Tie Switches Selection is very important in operation of distribution system because that is closely related with efficiency and reliability. In this paper, a new algorithm considering important elements is proposed to find optimal location of tie switches. In the case study, the proposed algorithm has been testified using real distribution network of KEPCO for verifying algorithm and complex network for applying future distribution network.

Optimal Maintenance Policy Using Non-Informative Prior Distribution and Marcov Chain Monte Carlo Method (사전확률분포와 Marcov Chain Monte Carlo법을 이용한 최적보전정책 연구)

  • Ha, Jung Lang;Park, Minjae
    • Journal of Applied Reliability
    • /
    • v.17 no.3
    • /
    • pp.188-196
    • /
    • 2017
  • Purpose: The purpose of this research is to determine optimal replacement age using non-informative prior information and Bayesian method. Methods: We propose a novel approach using Bayesian method to determine the optimal replacement age in block replacement policy by defining the prior probability with data on failure time and repair time. The Marcov Chain Monte Carlo simulation is used to investigate the asymptotic distribution of posterior parameters. Results: An optimal replacement age of block replacement policy is determined which minimizes cost and nonoperating time when no information on prior distribution of parameters is given. Conclusion: We find the posterior distribution of parameters when lack of information on prior distribution, so that the optimal replacement age which minimizes the total cost and maximizes the total values is determined.

A study of Optimal Reconfiguration in Distribution Power System using Initial Operating Point (초기 운전점 선정을 통한 배전계통 최적 재구성에 관한 연구)

  • Seo, Gyu-Seok;Kim, Jung-Nyun;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.451-456
    • /
    • 2007
  • This paper presents a problem that reconfigure distribution power system using branch exchange method. Optimal reconfiguration problem calculates line loss, voltage condition about system states of all situations that become different according to line On/off status, and search for optimum composition of these. However, result is difficult to be calculated fast. Because radiated operation condition of system is satisfied using many connection and sectionalize switches in the distribution power system. Therefore, in this paper, optimization method for reducing system total loss and satisfying operating condition of radial and constraints condition of voltage is proposed using the fastest branch exchange. And optimal solution at branch exchange algorithm can be wrong estimated to local optimal solution according to initial operating state. Considering this particular, an initial operating point algorithm is added and this paper showed that optimal solution arrives at global optimal solution.

The Development of Application Programs for Optimal Feeder Operation Through Distribution Automatic System

  • Ha, Bok-Nam;Seol, Ieel-Ho;Jeong, Mi-Ae
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.1
    • /
    • pp.42-47
    • /
    • 2004
  • This paper presents the various application programs for the Distribution Automation System (DAS) of the Korea Electric Power Corporation (KEPCO)'s distribution system. These programs are developed to allow for optimal operation in the areas of feeder automation, relay coordination, loss minimization and so on. They are single line diagram auto creation programs for the feeder, service restoration program, protection coordination program, data error detection program, and optimal network reconfiguration program. The details of these programs are presented for validity and effectiveness.

The Optimal Spare Level of a Weapon System having Phase-type Repair Time (Phase-type 수리시간을 갖는 무기체계의 적정예비품수 결정)

  • Yoon, Hyouk;Lee, Sang-Jin
    • Korean Management Science Review
    • /
    • v.26 no.3
    • /
    • pp.145-156
    • /
    • 2009
  • The probability distribution of the repair process should be determined to choose the optimal spare level of a weapon system with a queueing model. Though most weapon systems have a multi-step repair process, previous studies use the exponential distribution for the multi-step repair process. But the PH distribution is more appropriate for this case. We utilize the PH distribution on a queueing model and solve it with MGM(Matrix Geometric Method). We derive the optimal spare level using the PH distribution and show the difference of results between the PH and exponential distribution.

A Study on the Determination of Optimal Lot Size in Distribution System (물류시스템에서의 최적 로트크기 결정원칙에 관한 연구)

  • 김상직;김영식;김영겸
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.35
    • /
    • pp.39-46
    • /
    • 1995
  • This study is to find the optimal lot size method in the distribution system. In general, the lot size methods used in the distribution system is the same as the methods of the MRP system. The lot size methods used in this study are LFL, EoQ, LTC and POQ.. Resulting in case study, LTC is the optimal lot size method in the distribution system. In distribution system, VRP and VSP shall be investgated.

  • PDF

A Study on Time-Dependent Optimal Heater Control for Thermoforming Using Response Surface Method (열성형 과정에서 반응면 기법을 이용한 히터의 비정상 최적제어에 관한 연구)

  • Li, Zhen-Zhe;Heo, Kwang-Su;Seol, Seoung-Yun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2528-2533
    • /
    • 2007
  • Thermoforming is one of the most versatile and economical processes available for the manufacturing polymer products. The drawback of thermoforming is difficult to get uniform thickness of final products. For the distribution of thickness strongly depends on the temperature distribution of sheet, the adjustment of heater power is very important In this paper, an optimization study for getting uniform temperature distribution was carried out using dual optimization steps. At first, the steady state optimal distribution of heater power is searched by numerical optimization to get uniform temperature of sheet surface. In the second step, time-dependent optimal heater inputs have been found out to decrease the temperature difference through the direction of thickness using Rseponse Surface Method and D-optimal method. The optimization results show that the time-dependent optimal heater power distribution gives acceptable uniform sheet temperature in the field of forming temperature..

  • PDF

A Study on the Optimal Probability Distribution for the Time Interval Between Ships on the Traffic Route of the Busan North Port (부산 북항 통항 선박간의 시간간격 최적 확률분포에 관한 연구)

  • Kim, Jong-Kwan
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.413-419
    • /
    • 2019
  • Traffic routes typically have heavy traffic. Especially, the entrance of the route has a high risk of accidents occurring because of ships entering and exiting the port. However, almost of studies have focused on the distribution of traffic on the route. Thus, studies on the distribution between ships for passing through the route are insufficient. The purpose of this study was to analysis the traffic in the Busan north port No.1 route for one week. Based on present traffic conditions, one gate line was settled on the route with an analysis of traffic conditions. Based on the analysis data, each optimal time probability distribution between ships was divided into inbound/outbound and traffic volume. An analysis of the optimal probability distribution, was applied to 31 probability distributions divided into bounded, unbounded, non-negative, and advanced probability distribution. The KS test was applied for identifying three major optimal time probability distributions. According to the KS test results, the Wakeby distribution is the best optimal time probability distribution on the designated route. Although the optimal time probability distribution for other transportation studies such as on vehicles on highways is a non-negative probability distribution, this distribution is an advanced probability distribution. Thus, the application of major probability distribution for using other transportation studies is not applicable to this study Additionally, the distance between ships in actual traffic surveys and the distance estimated by the optimal probability distribution were compared. As a result of the comparison, those distances were fairly similar. However, this study was conducted in only one major port. Thus, it is necessary to investigate the time between ships and calculate a traffic volume on varying routes in future studies.