• Title/Summary/Keyword: optimal design technique

Search Result 978, Processing Time 0.025 seconds

OPTIMAL FORMATION TRAJECTORY-PLANNING USING PARAMETER OPTIMIZATION TECHNIQUE

  • Lim, Hyung-Chul;Bang, Hyo-Choong;Park, Kwan-Dong;Lee, Woo-Kyoung
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.3
    • /
    • pp.209-220
    • /
    • 2004
  • Some methods have been presented to get optimal formation trajectories in the step of configuration or reconfiguration, which subject to constraints of collision avoidance and final configuration. In this study, a method for optimal formation trajectory-planning is introduced in view of fuel/time minimization using parameter optimization technique which has not been applied to optimal trajectory-planning for satellite formation flying. New constraints of nonlinear equality are derived for final configuration and constraints of nonlinear inequality are used for collision avoidance. The final configuration constraints are that three or more satellites should be placed in an equilateral polygon of the circular horizontal plane orbit. Several examples are given to get optimal trajectories based on the parameter optimization problem which subjects to constraints of collision avoidance and final configuration. They show that the introduced method for trajectory-planning is well suited to trajectory design problems of formation flying missions.

Determination of Optimal Number of AGV by Simulation (시뮬레이션에 의한 AGV 최적대수 결정)

  • Lee, Mun-Sup;Yi, Sang-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.16 no.1
    • /
    • pp.59-65
    • /
    • 1990
  • In the design of AGVS (Automated Guided Vehicle Systems), one of the important problem is to determine the number of AGVs required to provide a given level of transport service. At present, there are two kind of methods to determine the number of AGVs, the one is to use the mathematical model, the other is to use the simulation technique. Among these, simulation based technique is more reliable than analytical method. In this sense, this paper intend to determine the optimal number of AGVs using personal computer simulation by SIMAN Ver.3.5.

  • PDF

Study on the optimal design for Planetary Gear Train using simulated annealing (시뮬레이티드 어닐링을 이용한 유성치차열의 최적설계에 관한 연구)

  • 최용혁;정태형;이근호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.172-177
    • /
    • 2004
  • A planetary gear trains has characteristics in compactness, power transformation ability and constant meshing. Usability is increased in applications of auto transmission and industrial gearbox. Study on optimum design of planetary gear train has been progressed on minimization of weight, miniaturization of planetary gear train and improvement of high strength. There are demands of study for the planetary gear train required long lift estimation In this wort being considered life, strength, intereference, contact ratio and aspect ratio, the optimum design algorithm is proposed to reduce the volume of planetary gear train with transferring the same amount of power. In the design of algorithm for planetary gear train, the determination of teeth number is separated to achieve simplicity and the simulated annealing method as a global optimal technique is used for optimal design method.

  • PDF

Study on the Optimal Design for Design Parameter of Planetary Gear Train Using Simulated Annealing (시뮬레이티드 어닐링을 이용한 유성치차열의 설계요소 최적화에 관한 연구)

  • Lee Geun Ho;Choi Young Hyuk;Chong Tae Hyong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.58-65
    • /
    • 2005
  • A planetary gear trains has characteristics in compactness, power transformation ability and constant meshing. Usability is increased in applications of auto transmission and industrial gearbox. Study on optimum design of planetary gear train has been progressed on miniaturization of weight, miniaturization of planetary gear train and improvement of high strength. There are demands of study f3r the planetary gear train required long life estimation. In this work being considered life, strength, interference, contact ratio and aspect ratio, the optimum design algorithm is proposed to reduce the volume of planetary gear train with transferring the same amount of power. In the design of algerian for planetary gear train, the determination of teeth number is separated to achieve simplicity and the simulated annealing method as a global optimal technique is used far optimal design method.

Optimal Design of Geodtic Network (측지망의 최적화 설계에 관한 연구)

  • Yun, Hong-Sic;Cho, Jae-Myoung;Cho, Hyun-Joon;Sung, Woo-Jin
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.151-155
    • /
    • 2010
  • This paper describe the optimal design of geodetic network by analytical technique based on the quality criteria of network. We described an example of geodetic network design taking into account the precision, reliability and strength that are the main criteria of network design. The main goal of this paper is to evaluate the criteria to design the geodetic network coinciding with the criteria of geometrical strength and high reliability. From this study, the result shows relatively weaker strength in marginal part than the center of network. This indicated that the precision of observation in marginal part is relatively lower than the center.

  • PDF

An Design Exploration Technique of a Hybrid Memory for Artificial Intelligence Applications (인공지능 응용을 위한 하이브리드 메모리 설계 탐색 기법)

  • Cho, Doo-San
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.5
    • /
    • pp.531-536
    • /
    • 2021
  • As artificial intelligence technology advances, it is being applied to various application fields. Artificial intelligence is performing well in the field of image recognition and classification. Chip design specialized in this field is also actively being studied. Artificial intelligence-specific chips are designed to provide optimal performance for the applications. At the design task, memory component optimization is becoming an important issue. In this study, the optimal algorithm for the memory size exploration is presented, and the optimal memory size is becoming as a important factor in providing a proper design that meets the requirements of performance, cost, and power consumption.

Optimal Topoloty Design of Structures and Ribs Using Density Distribution (밀도 분포를 이용한 구조물 및 리브의 최적 위상 설계)

  • Chung, Jinpyung;Lee, Kunwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.66-77
    • /
    • 1996
  • Optimal topology design is to search the optimal configuration of a structure which can be used as a shape at the conceptual design stage. Our objective is to maximize the stiffness of the structures and ribs under a material usage constraintl. The density of each finite element is the design variable and its relationship with Young's modulus is expressed by quadratic form. The configuration is represented by the entire density distribution, the structural analysis is performed by finite element method and the optimiza- tion is performed by Feasible Direction Method. Feasible Direction Method can handle various problems simultaneously, that is, mult-objectives and multi-constraints. Total computation time can be reduced by the quadratic relationship between the density and the material property and fewer design variables than Homogenization Method. Toplogy optimization technique developed in this research is applied to design the shapes of the ribs.

  • PDF

OPTIMAL SHAPE DESIGN OF A S-SHAPED SUBSONIC INTAKE USING NURBS (NURBS를 이용한 S형 천음속 흡입관 최적 설계)

  • Lee B.J.;Kim C.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.57-66
    • /
    • 2006
  • An optimal shape design approach is presented for a subsonic S-shaped intake using aerodynamic sensitivity analysis. Two-equation turbulence model is employed to capture strong counter vortices in the S-shaped duct more precisely. Sensitivity analysis is performed for the three-dimensional Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method For code validation, the result of the flow solver is compared with experiment data and other computational results of bench marking test. To study the influence oj turbulence models and grid refinement on the duct flow analysis, the results from several turbulence models are compared with one another and the minimum number of grid points, which can yield an accurate solution is investigated The adjoint variable code is validated by comparing the complex step derivative results. To realize a sufficient and flexible design space, NURBS equations are introduced as a geometric representation and a new grid modification technique, Least Square NURBS Grid Approximation is applied With the verified flow solver, the sensitivity analysis code and the geometric modification technique, the optimization of S-shaped intake is carried out and the enhancement of overall intake performance is achieved The designed S-shaped duct is tested in several off-design conditions to confirm the robustness of the current design approach. As a result, the capability and the efficiency of the present design tools are successfully demonstrated in three-dimensional highly turbulent internal flow design and off-design conditions.

Aircraft wings dynamics suppression by optimal NESs designed through an Efficient stochastic linearisation approach

  • Navarra, Giacomo;Iacono, Francesco Lo;Oliva, Maria;Esposito, Antonio
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.5
    • /
    • pp.405-423
    • /
    • 2020
  • Non-linear energy sink (NES) is an emerging passive absorber able to mitigate the dynamic response of structures without any external energy supply, resonating with all the modes of the primary structure to control. However, its inherent non-linearities hinder its large-scale use and leads to complicated design procedures. For this purpose, an approximate design approach is herein proposed in a stochastic framework. Since loads are random in nature, the stochastic analysis of non-linear systems may be performed by means of computational intensive techniques such as Monte Carlo simulations (MCS). Alternatively, the Stochastic Linearisation (SL) technique has proven to be an effective tool to investigate the performance of different passive control systems under random loads. Since controlled systems are generally non-classically damped and most of SL algorithms operate recursively, the computational burden required is still large for those problems that make intensive use of SL technique, as optimal design procedures. Herein, a procedure to speed up the Stochastic Linearisation technique is proposed by avoiding or strongly reducing numerical evaluations of response statistics. The ability of the proposed procedure to effectively reduce the computational effort and to reliably design the NES is showed through an application on a well-known case study related to the vibrations mitigation of an aircraft wing.

Optimum Design of Piled Raft Foundations Using Genetic Algorithm(II) - Comparison with Laboratory Model Test Results - (유전자 알고리즘을 이용한 Piled Raft 기초의 최적설계(II) - 실내모형실험결과의 비교 -)

  • 김홍택;강인규;박순규;박정주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.379-386
    • /
    • 2001
  • Piled raft foundations are usually used to reduce total and differential settlements of superstructures. In the piled raft foundations, the raft is often on its own able to provide adequate bearing capacity and only few widely spaced piles are added to the foundation to keep settlements be1ow a certain limit. In this paper, experimental studies on the load sharing ratio between piles and raft are carried out. Also, for evaluating the application of optimum design technique using a genetic algorithm, optimal locations of files are compared with the results of laboratory model tests. from tile results of laboratory model tests, there are found that the load sharing ratio between files and raft is depended on the number of piles and stiffness of raft, and the optimal locations of piles became concentrated on the middle of rafts. From these results of laboratory model tests, the optimum technique using a genetic algorithm is acknowledged to the application in the piled raft.

  • PDF