• 제목/요약/키워드: optimal design factor

검색결과 706건 처리시간 0.027초

마이크로 디스플레이 디바이스의 가속수명시험에 관한 연구 (The Study of Accelerated Life Test for Micro Display Device)

  • 차상목;윤성록;조여욱
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제2권1호
    • /
    • pp.15-22
    • /
    • 2002
  • This paper is concerned about an Accelerated Life Test for Micro Display Device which is being used in a Projection TV, in order to find a failure mode occurred in field in a short time, to identify a major factor to affect a life, and to estimate a mean life. For this purpose, we selected a temperature as a accelerated factor to perform a test and measured degradation of display device using visual inspection and chromaticity table. In the result of Accelerated Life Test, it is confirmed that failure mode is equal to the degradation of display device by vendor and the Temperature is a major factor to affect a failure. Besides, according as the display device is turned to green as degraded, it is identified that the change of the chromaticity value is one method to measure the degree of the degradation . So, we applied the optimal condition, which consider a cost and life to lower the Temperature which is a major factor acquired by the result of ALT, to PTV design

  • PDF

OPTIMAL RELIABILITY DESIGN FOR THIN-WALLED BEAM OF VEHICLE STRUCTURE CONSIDERING VIBRATION

  • Lee, S.B.;Baik, S.;Yim, H.J.
    • International Journal of Automotive Technology
    • /
    • 제4권3호
    • /
    • pp.135-140
    • /
    • 2003
  • In the deterministic optimization of a structural system, objective function, design constraints and design variables, are treated in a nonstatistical fashion. However, such deterministic engineering optimization tends to promote the structural system with lest reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. Therefore, a balance must be developed between the satisfactions of the design requirements and the objectives of reducing manufacturing cost. This paper proposes the reliability-based design optimization (RBDO) technique, which enables the optimum design that considers confidence level for the vibration characteristics of structural system. Response surface method (RSM) is utilized to approximate the performance functions describing the system characteristics in the RBDO procedure. The proposed optimization technique is applied to the pillar section design considering natural frequencies of a vehicle structure.

신경망과 실험계획법을 이용한 열간 단조품의 공정설계 (Process Design of a Hot Forged Product Using the Artificial Neural Network and the Statistical Design of Experiments)

  • 김동환;김동진;김호관;김병민;최재찬
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.15-24
    • /
    • 1998
  • In this research. we have proposed a new technique to determine .the combination of design parameters for the process design of a hot forged product using artificial neural network(ANN) and statistical design of experiments(DOE). The investigated problem involves the adequate selection of the aspect ratio of billet, the ram velocity and the friction factor as design parameters. An optimal billet satisfying the forming limitation, die filling, load and energy as well as more uniform distribution of effective strain, is determined by applying the ability of artificial neural network and considering the analysis of mean and variation on the functional requirement. This methodology will be helpful in designing and controlling parameters on the shop floor which would yield the best design solution.

  • PDF

전산유체해석과 다구찌 방법을 연계한 공기 가열식 히터 시스템의 난방속효성 최적화에 관한 연구 (A Study on the Optimum Design of Warm-up rate in a Air-Heated Heater System by Using CFD Analysis and Taguchi Method)

  • 김민호
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.72-82
    • /
    • 2005
  • The objective of this paper is to describe the optimization of design parameters in a large-sized commercial bus heater system by using CFD(computational fluid dynamics) analysis and Taguchi method. In order to obtain the best combination of each control factor which results in a desired performance of heater system, the parameter design of the Taguchi method is adopted for the robust design considering the dynamic characteristic. The research activity may be divided into four phases. The first one is analyzing the problem, i.e., ascertaining the influential factors. In the second phase the levels were set in such a way that their variation would significantly influence the response. In the third phase the experimental runs were designed. In the final phase the planned runs were carried out numerically to evaluate the optimal combination of factors which is able to provide the best response. In this study, eight factors were considered for the analysis: one with two level and seven with three level combinations comprising the $L_{18}(2^1{\times}3^7)$ orthogonal array. The results of this study can be summarized as follows ; (i)The optimum condition of control factor is a set of <$A_2\;B_1\;C_3\;D_3\;E_1\;F_2\;G_3\;H_2$> where A is shape of the outer fin, B is pitch of the outer fin, C is height of the outer fin, D is the inner fin number, E is the inner fin height, F is length of the flame guide, G is diameter of the heating element and H is clearance between air guide and heating element. (ii)The heat capacity of heated discharge air under the optimum condition satisfies the equation y=0.6M w here M is a signal factor. (iii)The warm-up rate improves about three times, more largely as com pared with the current condition, which results in about 9.2minutes reduction.

Optimum design of lead-rubber bearing system with uncertainty parameters

  • Fan, Jian;Long, Xiaohong;Zhang, Yanping
    • Structural Engineering and Mechanics
    • /
    • 제56권6호
    • /
    • pp.959-982
    • /
    • 2015
  • In this study, a non-stationary random earthquake Clough-Penzien model is used to describe earthquake ground motion. Using stochastic direct integration in combination with an equivalent linear method, a solution is established to describe the non-stationary response of lead-rubber bearing (LRB) system to a stochastic earthquake. Two parameters are used to develop an optimization method for bearing design: the post-yielding stiffness and the normalized yield strength of the isolation bearing. Using the minimization of the maximum energy response level of the upper structure subjected to an earthquake as an objective function, and with the constraints that the bearing failure probability is no more than 5% and the second shape factor of the bearing is less than 5, a calculation method for the two optimal design parameters is presented. In this optimization process, the radial basis function (RBF) response surface was applied, instead of the implicit objective function and constraints, and a sequential quadratic programming (SQP) algorithm was used to solve the optimization problems. By considering the uncertainties of the structural parameters and seismic ground motion input parameters for the optimization of the bearing design, convex set models (such as the interval model and ellipsoidal model) are used to describe the uncertainty parameters. Subsequently, the optimal bearing design parameters were expanded at their median values into first-order Taylor series expansions, and then, the Lagrange multipliers method was used to determine the upper and lower boundaries of the parameters. Moreover, using a calculation example, the impacts of site soil parameters, such as input peak ground acceleration, bearing diameter and rubber shore hardness on the optimization parameters, are investigated.

Optimal Design of Partially Accelerated Life Testing for Multi-Component Mixed Systems

  • 박희창;정광만;김민환
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.87-95
    • /
    • 2002
  • In this paper we consider optimal designs of partially accelerated life testing which is devised for multi-component mixed systems with the considerably long lifetime. Test items are run at both use condition and accelerated condition until a specified censoring time. The optimal criterion for the sample-proportion allocated to accelerated condition is to minimize asymptotic variance of the maximum likelihood estimators of the acceleration factor and hazard rates.

  • PDF

모델링 및 전산모사를 통한 연료전지공정의 제어전략에 관한 연구 (Modeling, simulation and control strategy for the fuel cell process)

  • 이상범;이익형;윤인섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1012-1015
    • /
    • 1996
  • This study focuses on the optimal operation and control strategy of the fuel cell process. The control objective of the Phosphoric Acid Fuel Cell (PAFC) is established and dynamic modeling equations of the entire fuel cell process are formulated as discrete-time type. On-line optimal control of the MIMO system employs the direct decomposition-coordination method. The objective function is modified as the tracking form to enhance the response capability to the load change. The weight factor matrices Q,R, which are design parameters, are readjusted. This control system is compared with LQI method and the results show that the suggested method is better than the traditional method in pressure difference control.

  • PDF

Parameter Design and Analysis for Aluminum Resistance Spot Welding

  • Cho, Yong-Joon;Li, Wei;Hu, S. Jack
    • Journal of Welding and Joining
    • /
    • 제20권2호
    • /
    • pp.102-108
    • /
    • 2002
  • Resistance spot welding of aluminum alloys is based upon Joule heating of the components by passing a large current in a short duration. Since aluminum alloys have the potential to replace steels fur automobile body assemblies, it is important to study the process robustness of aluminum spot welding process. In order to evaluate the effects of process parameters on the weld quality, major process variables and abnormal process conditions were selected and analyzed. A newly developed two-stage, sliding-level experiment was adopted fur effective parameter design and analysis. Suitable ranges of welding current and button diameters were obtained through the experiment. The effects of the factors and their levels on the variation of acceptable welding current were considered in terms of main effects. From the results, it is concluded that any abnormal process condition decreases the suitable current range in the weld lobe curve. Pareto analysis of variance was also introduced to estimate the significant factors on the signal-to-noise (S/N) ratio. Among the six factors studied, fit-up condition is found to be the most significant factor influencing the SM ratio. Using a Pareto diagram, the optimal condition is determined and the SM ratio is significantly improved using the optimal condition.

해양플랜트용 라티스 붐 크레인의 최적 설계에 관한 연구 (A Study on the optimal design of lattice boom crane for offshore plant)

  • 김현지;김지혜;박상혁;최시연;허선철
    • 한국산업융합학회 논문집
    • /
    • 제22권6호
    • /
    • pp.757-765
    • /
    • 2019
  • In manufacturing An offshore plant is a structure that produces resources buried in the seabed. It can be classified into fixed, floating, and hybrid methods depending on the installation method. In particular, the Lattice boom type crane is typically used because it is used for a long time in the sea and moves to other seas, which is less affected by wind. In this study, the crane was designed by using three-step optimization design in the early stage of the design of Lattice boom crane for offshore plant. Finite element analysis was performed to verify the safety factor, deflection, buckling coefficient and fatigue life of the designed crane and the results were verified.

누설유량과 회전체동역학적 성능을 고려한 래버린스 씰 설계 (Labyrinth Seal Design Considering Leakage Flow Rate and Rotordynamic Performance)

  • 문민주;이정인;서준호
    • Tribology and Lubricants
    • /
    • 제39권2호
    • /
    • pp.61-71
    • /
    • 2023
  • This study proposes a procedure for designing a labyrinth seal that meets both leakage flow rate and rotordynamic performance criteria (effective damping, amplification factor, separation margin, logarithmic decrement, and vibration amplitude). The seal is modeled using a one control volume (1CV) bulk flow approach to predict the leakage flow rate and rotordynamic coefficients. The rotating shaft is modeled with the finite element (FE) method and is assumed to be supported by two linearized bearings. Geometry, material and operating conditions of the rotating shaft, and the supporting characteristics of the bearings were fixed. A single labyrinth seal is placed at the center of the rotor, and the linearized dynamic coefficients predicted by the seal numerical model are inserted as linear springs and dampers at the seal position. Seal designs that satisfy both leakage and rotordynamic performance are searched by modifying five seal design parameters using the multi-grid method. The five design parameters include pre-swirl ratio, number of teeth, tooth pitch, tooth height and tooth tip width. In total, 12500 seal models are examined and the optimal seal design is selected. Finally, normalization was performed to select the optimal labyrinth seal designs that satisfy the system performance requirements.