• 제목/요약/키워드: optimal design factor

검색결과 712건 처리시간 0.034초

비선형 유한요소법과 최적화 기법을 이용한 고점적률 BLDC의 최적설계 (An Optimal Design of High Space Factor BLDC Motor by Nonlinear Finite Element Method and Optimization Method)

  • 오승균;정태경;진용선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.388-390
    • /
    • 1999
  • This paper discusses an optimal design of high space factor BLDC motor. Because of high space factor BLDC, Nonliear finite element method considering saturation of outer-rotor is used. For optimal design, a new niching genetic algorithm, namely "Restricted Competitions Selection" is used. This algorithm constructs an objective function using only the most important criteria and provides a designer with a set of solution rather than one solution. To verify its effectiveness, the new niching genetic algorithm is applied to an actual high space factor BLDC motor We show that a new designed high space factor BLDC motor is superior to the actual high space factor BLDC.

  • PDF

BLDC 모터 고정자 슬롯 형상설계에 관한 연구 (A Study On The Stator Slot Shape Design of BLDC Motor)

  • 한상록;이강연;정병호
    • 조명전기설비학회논문지
    • /
    • 제29권5호
    • /
    • pp.41-49
    • /
    • 2015
  • In this paper, we studied an optimal design and efficiency improvement of the BLCD motor used in home electronic appliance. The number of stator slots is chosen depending on the rotor poles, phase number, and the winding configuration. In general, a fractional slots/pole design is preferred to minimize cogging torque. To reduce the winding resistance, we reduced the coil length and we improved the coil space factor. We proposed three types of stator slot shape design for the optimal BLDC motor design. One of them, U-type slot shape is a best optimal design, it proved by the simulated and tested. Optimal design of essential parameters aiming at high winding factor are presented to create for a high-quality system implementation. Design analysis is verified by testing and building a prototype motor.

Optimal Unity Power Factor Control of Permanent Magnet Synchronous Motor with q-axis Field by Inverse LQ Method

  • Takami, Hiroshi
    • Journal of Power Electronics
    • /
    • 제1권2호
    • /
    • pp.117-126
    • /
    • 2001
  • A synchronous motor(SM) with q-axis special field winding of which the q-axis field-current compensates and cancels armature reaction can be driven at unity power factor under the conditions of transient state as well as steady state. The motor operates in high efficiency in all conditions. However, in order to obtain maximum performance of the motor, it is required that the time constant of armature circuit corresponds to that of q-axis field circuit. Inverse LQ(ILQ) design method on a basis of the pole assignment is suitable for this problem:(1) The time constants of the output responses can be designed for desired specifications, (2) Relations between feedback gains and response of closed loop system are very clear and (3) Optimal solutions can be given by simple procedure of ILQ method without solving the Ricaati's equation, compared to the usual LQ design method. Accordingly, the ILQ method can make the responses of armature current and q-axis field-current correspond. In this paper, it is proved by numerical simulations and experiments that the ILQ method is very effective for optimal regulator design of this plant and realizes a high-performance motor with unity power factor and high efficiency.

  • PDF

DAM 수문의 최적설계에 관한 사찰 (A Study on the Optimal Design of the Gate Leaf of a Dam)

  • 최상훈;한응교;양인홍
    • 한국해양공학회지
    • /
    • 제5권1호
    • /
    • pp.64-70
    • /
    • 1991
  • The design theory of roller gate has been systematized laying more emphasis on practical formulas than theoretical ones and the design procedure of the existing gate facilites is reviewed and analyaed on economical viewpoint and safety factor. The design theory of timoshenko, the thechnical standards for hydraulic gate and penstock of Japan, and the design standards for waterworks structures of Germany are applied to the study of optimal design of a gate leaf. In this study, gate leaf which is now being operated for water control at the seadike, estuary dam and reservoir dam are adopted as a mode, and a new design method by the computer is proposed through the variation of design elements within practical ranges. As a result, safety factor and economical design can be made by using T-beams to the horizontal and vertical beam of the gate leaf instead of H-beams used in the existing seadike roller gate at Asan, and total weight of gate leaf is reduced by the present optimization.

  • PDF

비대칭 벽식구조의 최적 비틀림 설계 (An optimized torsional design of asymmetric wall structures)

  • 조봉호;홍성걸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.327-334
    • /
    • 2002
  • This paper develops an optimized torsional design method of asymmetric wall structures considering deformation capacities of walls. Contrary to the current torsional provisions, a deformation based torsional design is based on the assumption that stiffness and strength are dependent. Current torsional provisions specify two design eccentricity of stiffness to calculate the design forces of members. But such a methodology leads to an excessive over-strength of some members and an optimal torsional behavior is not ensured. Deformation-based torsional design uses displacement and rotation angle as design parameters and calculates base shear for inelastic torsional response directly. Because optimal torsional behavior can be defined based on the deformation of members, deformation based torsional design procedure can be applied to the optimal and performance-based torsional design. To consider the effect of accidental eccentricity, an over-strength factor is defined. The over-strength factor is determined from performance level, torsional resistance and arrangement of walls.

  • PDF

밸브 구동용 개폐식 솔레노이드 액추에이터의 설계 (A Design of On/Off Type Solenoid Actuator for Valve Operation)

  • 성백주
    • 유공압시스템학회논문집
    • /
    • 제6권4호
    • /
    • pp.24-32
    • /
    • 2009
  • For a design of on/off solenoid actuator for valve actuating, designer must have the experimental knowledge as well as general electromagnetic formulas to design object. It is possible for theoretical knowledge to do the out-line design, but it is impossible to optimal design without experimental knowledge which only can be achieved through many repeated experiments. In addition, in present on/off type solenoid actuator field, the smaller, lightening, lower consumption power, high response time are effected as the most important design factor. So, experimental knowledge is more needed for optimal design of solenoid actuator. In this study, we derived the governing equations for optimal design of on/off solenoid actuator for valve actuating and developed a design program composed electromagnetic theories and experimental parameter values for inexperienced designers. And we proved the propriety of this program by experiments.

  • PDF

Design of Multi-winding Inductor for Minimum Inductor Current Ripple Using Optimized Coupling Factor

  • Kang, Taewon;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.231-232
    • /
    • 2016
  • This paper investigates the design of multi-winding coupled inductor for minimum inductor current ripple. Based on the general circuit model of coupled inductor together with the operating principles of dc-dc converter, the relationship between the ripple size of inductor current and the coupling factor is derived under the different duty ratio. The optimal coupling factor of n-phase multi-winding coupled inductor which corresponds to a minimum inductor ripple current becomes -(1/n-1), i.e. a complete inverse coupling without leakage inductance, as the duty ratio of steady-state operating point approaches 1/n, 2/n, ${\cdots}$ or (n-1)/n. In an opposite manner, the optimal coupling factor value of zero, i.e. zero mutual inductance, is required when the duty ratio of steady-state operating point approaches either zero or one. Therefore, coupled inductors having optimal coupling factor can minimize the ripple current of inductor and inductor size.

  • PDF

도시지역의 최적 배수관망 설계를 위한 Risk Safety Factor 관계의 설정 (Derivation of the Risk-Safety Factor Relation for Optimal Storm Sewer Design in Urban Area)

  • 김문모;이원환;조원철
    • 대한토목학회논문집
    • /
    • 제12권4호
    • /
    • pp.129-134
    • /
    • 1992
  • 본 논문은 도시유역의 최적 배수관망설계를 위한 위험도-안전도계수 관계를 설정하는 것이다. 배수관망의 신뢰도 분석을 위하여는 하수관의 용량과 하중을 결정하는 식을 구성하는 여러가지 매개변수들의 불확실성이 고려되어야 하며, 이에 따른 위험도를 결정하게 된다. 본 연구에서는 신뢰도 분석기법을 유역면적 $381,000m^2$인 성산 유수지 유역에 적용하였다. 하수관망의 용량을 결정하는 식으로는 Darcy-Weisbach식을, 하중을 결정하는 식으로는 합리식을 사용하였으며, 하수관의 용량과 설계유량과의 비로 나타나는 안전도계수를 구하여 이를 하수관망의 위험도와 상관시켰다. 이에 따라 재현기간별 위험도-안전도계수를 얻었으며, 이는 배수관망의 최적설계에 이용될 수 있다.

  • PDF

반응표면법을 이용한 평행류 열교환기의 설계인자 최적화 (Optimal Design of a Parallel-Flow Heat Exchanger by Using a Response Surface Method)

  • 오석진;이관수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1028-1033
    • /
    • 2004
  • The heat and flow characteristics in a single-phase parallel-flow heat exchanger was examined numerically to obtain its optimal shape. A response surface method was introduced to predict its performance approximately with respect to design parameters over design domain. Design parameters are inflow and outflow angle of the working fluid and horizontal and vertical location of inlet and outlet. The evaluation of the relative priority of the design parameters was performed to choose three important parameters in order to use a response surface method. A JF factor was used as an evaluation characteristic value to consider the heat transfer and the pressure drop simultaneously. The JF factor of the optimum model, compared to that of the base model, was increased by about 5.3%.

  • PDF

점탄성 물질의 온도와 주파수 의존성을 고려한 구속형 제진보의 최대 손실계수 설계 (Optimal Layout Design of Frequency- and Temperature-Dependent Viscoelastic Materials for Maximum Loss Factor of Constrained-Layer Damping Beam)

  • 이두호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1023-1026
    • /
    • 2007
  • Optimal damping layout of the constrained viscoelastic damping layer on beam is identified with temperatures by using a gradient-based numerical search algorithm. An optimal design problem is defined in order to determine the constrained damping layer configuration. A finite element formulation is introduced to model the constrained damping layer beam. The four-parameter fractional derivative model and the Arrhenius shift factor are used to describe dynamic characteristics of viscoelastic material with respect to frequency and temperature. Frequency-dependent complex-valued eigenvalue problems are solved by using a simple resubstitution algorithm in order to obtain the loss factor of each mode and responses of the structure. The results of the numerical example show that the proposed method can reduce frequency responses of beam at peaks only by reconfiguring the layout of constrained damping layer within a limited weight constraint.

  • PDF