• 제목/요약/키워드: optimal control theory

검색결과 423건 처리시간 0.038초

로보트 시스템의 State space 모델에 대한 최적 다중-변화 구조제어의 응용연구 (An application study of the optimal multi-variable structure control to the state space model of the robot system)

  • 이주장
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.321-325
    • /
    • 1986
  • A new control scheme for the state space model of the robot system using the theory of optimal multi-variable structure is presented in this paper. It is proposed to optimize multi-dimensional variable structure systems for obtaining the required stabilizing signal by minimizing a performance index with respect to the state vector in the sliding mode. It is concluded the proposed variable structure controller yields better system dynamic performance than that obtained by using the only linear optimal controller inthat responses for a step disturbance have a shorter setting time, no matter what overshoot values and rising time.

  • PDF

The Application of Optimal Control Through Fiscal Policy on Indonesian Economy

  • SYAHRINI, Intan;MASBAR, Raja;ALIASUDDIN, Aliasuddin;MUNZIR, Said;HAZMI, Yusri
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권3호
    • /
    • pp.741-750
    • /
    • 2021
  • The budget deficit is closely related to expansionary fiscal policy as a fiscal instrument to encourage economic growth. This study aims to apply optimal control theory in the Keynesian macroeconomic model for the economy, so that optimal growth can be found. Macroeconomic variables include GDP, consumption, investment, exports, imports, and budget deficit as control variables. This study uses secondary data in the form of time series, the time period 1990 to 2018. Performing optimal control will result in optimal fiscal policy. The optimal determination is done through simulation, for the period 2019-2023. The discrete optimal control problem is to minimize the objective function in the form of a quadratic function against the deviation of the state variable and control variable from the target value and the optimal value. Meanwhile, the constraint is Keynes' macroeconomic model. The results showed that the optimal value of macroeconomic variables has a deviation from the target values consisting of: consumption, investment, exports, imports, GDP, and budget deficit. The largest deviation from the average during the simulation occurs in GDP, followed by investment, exports, and the budget deficit. Meanwhile, the lowest average deviation is found in imports.

최적 제어 이론을 사용한 비행 경로 선정 (Determination of flight route using optimal control theory)

  • 김을곤
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.407-411
    • /
    • 1992
  • A method for optimal route planning is presented with the assumption that the overall defended area is known in terms of threat potential function. This approach employes tangent plane to reduce the dimension of the state space for optimal programming problems with a state equality constraint. One-dimensional search algorithm is used to select the optimal route among the extermal fields which are obtained by integrating three differential equations from the initial values. In addition to being useful for the route planning through threat potential area, the trajectory planning will be suitable for general two-dimensional searching problems.

  • PDF

PID 제어기의 최적설계에 관한 연구 (A Study on the Optimal Design of a PID Controller(II))

  • 양주호;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.61-69
    • /
    • 1987
  • The PID controller is one of the most popular devices for control systems and the adjustment of its parameters has been generally accomplished by semi-empirical rules and has been considered only in the view of improvement of the control performance. But in modern control theory, a quadratic form is introduced as a criterion function which considers not only to improve quality of control but also to save energy required for the control. In this paper, authors propose a method of the parameter adjustment of the PID controller by means of maximum principle minimizing the quadratic criterion function and establish a link between the conventional parameter adjustment method and the technique of the modern optimal control theory in the design of a PID controller.

  • PDF

최적제어이론을 이용한 DC-DC 컨버터의 제어기 설계 (Controller Design of a DC-DC Converter using an Optimal Control Theory)

  • 이상현;배은경;신철준;전기영;전지용;오봉환;이훈구;한경희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.421-423
    • /
    • 2007
  • In this paper, The authors apply a state feedback control using an optimal control theory to improve the stability of the control and the dynamic response of the DC-DC converter system with a number of different loads. To execute a this state feedback control, The authors present the pole placement technique using Linear Quadratic Regulator(LQR) to optimally control the system. An integrator can also be included in the open-loop path in order to minimize the steady-state error of the output voltage. To confirm the superiority of the controller, The simulation results are presented.

  • PDF

MEASURE THEORETICAL APPROACH FOR OPTIMAL SHAPE DESIGN OF A NOZZLE

  • FARAHI M. H.;BORZABADI A. H.;MEHNE H. H.;KAMYAD A. V.
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.315-328
    • /
    • 2005
  • In this paper we present a new method for designing a nozzle. In fact the problem is to find the optimal domain for the solution of a linear or nonlinear boundary value PDE, where the boundary condition is defined over an unspecified domain. By an embedding process, the problem is first transformed to a new shape-measure problem, and then this new problem is replaced by another in which we seek to minimize a linear form over a subset of linear equalities. This minimization is global, and the theory allows us to develop a computational method to find the solution by a finite-dimensional linear programming problem.

Optimal control and design of composite laminated piezoelectric plates

  • ALamir, ALhadi E.
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1177-1202
    • /
    • 2015
  • The present paper is concerned with the optimal control and/or design of symmetric and antisymmetric composite laminate with two piezoelectric layers bonded to the opposite surfaces of the laminate, and placed symmetrically with respect to the middle plane. For the optimal control problem, Liapunov-Bellman theory is used to minimize the dynamic response of the laminate. The dynamic response of the laminate comprises a weight sum of the control objective (the total vibrational energy) and a penalty functional including the control force. Simultaneously with the active control, thicknesses and the orientation angles of layers are taken as design variables to achieve optimum design. The formulation is based on various plate theories for various boundary conditions. Explicit solutions for the control function and controlled deflections are obtained in forms of double series. Numerical results are given to demonstrate the effectiveness of the proposed control and design mechanism, and to investigate the effects of various laminate parameters on the control and design process.

연속냉간 압연시스템의 디지털 최적 예견제어 (Digital Optimal Preview Control of Tandem Cold Mills)

  • 김종식;김승수;이규택
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2142-2153
    • /
    • 1995
  • A digital preview controller using optimal LQ control theory is suggested for tandem cold mills to achieve a remarkable improvement of the thickness accuracy. Optimal preview control system is constructed for each rolling stand of tandem cold mills for which the blocked noninteracting control is carried out, and it is compared with the optimal LQ control system which has only feedback control. And in the cases that all/some of disturbance inputs are previewable, full and partial preview controllers are designed, and their performance effects are compared and discussed. The simulation results show that the performance of tandem cold mills can be improved largely through partial preview control.

Predictive Control for a Fin Stabilizer

  • Yoon, Hyeon-Kyu;Lee, Gyeong-Joong;Fang, Tae-Hyun
    • 한국항해항만학회지
    • /
    • 제31권7호
    • /
    • pp.597-603
    • /
    • 2007
  • A predictive controller can solve a control problem related to a disturbance-dominant system such as roll stabilization of a ship in waves. In this paper, a predictive controller is developed for a fin stabilizer. Future wave-induced moment is modeled simply using two typical regular wave components for which six parameters are identified by the recursive Fourier transform and the least squares method using the past time series of the roll motion. After predicting the future wave-induced moment, optimal control theory is applied to discover the most effective command fin angle that will stabilize the roll motion. In the results, wave prediction performance is investigated, and the effectiveness of the predictive controller is compared to a conventional PD controller.

VISCOSITY RESISTANCE CONTROL OF INTELLIGENT PROSTHETIC-LEGS

  • Hashimoto, Minoru;Ono, Kenji
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 춘계 학술대회 및 국제 감성공학 심포지움 논문집 Proceeding of the 2000 Spring Conference of KOSES and International Sensibility Ergonomics Symposium
    • /
    • pp.328-329
    • /
    • 2000
  • A viscosity resistance control method of the intelligent prosthetic legs is studied using an optimal control theory. The simulated results suggests that it is important to control the viscosity of the prosthetic knee joint in one period of walking to improve the usability. In this paper we describe modeling of the thigh prosthetic legs, optimal control and simulated results.

  • PDF