• Title/Summary/Keyword: optimal command

Search Result 139, Processing Time 0.036 seconds

Optimal guidance with terminal impact angle and control constraint (표적충돌각과 최대가속도 제한을 고려한 최적유도기법)

  • 류창경;조항주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.601-606
    • /
    • 1992
  • In this paper, we consider an optimal guidance problem with both the terminal impact angle and control constraints in addition to the usual zero miss distance constraint. We first present the optimal solution of the problem for the missile of an arbitrary order, and show that it is a linear combination of a step response and a ramp response of the missile. Therefore the usual practice of using the control obtained by saturating the optimal solution for the case of unlimited control may result in a large terminal miss. A method called the initial command saturation is suggested to reduce this terminal miss, where the control in the initial phase of guidance is forced to be saturated until a certain condition for a guidance variable is met.

  • PDF

Trajectory Optimization and Optimal Explicit Guidance Algorithm Design for a Satellite Launch Vehicle (위성발사체의 궤적최적화와 최적 유도 알고리듬 설계)

  • Roh, Woong-Rae;Kim, Yodan;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.173-182
    • /
    • 2001
  • Ascent trajectory optimization and optimal explicit guidance problems for a satellite launch vehicle in a 2-dimensional pitch plane are studied. The trajectory optimization problem with boundary conditions is formulated as a nonlinear programming problem by parameterizing the pitch attitude control variable, and is solved by using the SQP algorithm. The flight constraints such as gravity-turn are imposed. An optimal explicit guidance algorithm in the exoatmospheric phase is also presented, the guidance algorithm provides steering command and time-to-go value directly using the current states of the vehicle and the desired orbit insertion conditions. To verify the optimality and accuracy of the algorithm simulations are performed.

  • PDF

Analytical Solution for Attitude Command Generation of Agile Spacecraft (고기동 인공위성의 해석적 자세명령생성 기법 연구)

  • Mok, Sung-Hoon;Bang, Hyochoong;Kim, Hee-Seob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.8
    • /
    • pp.639-651
    • /
    • 2018
  • An analytical solution to generate attitude command profile for agile spacecraft is proposed. In realistic environment, obtaining analytical minimum-time optimal solution is very difficult because of following constraints-: 1) actuator saturation, 2) flexible mode excitation, 3) uplink command bandwidth limit. For that reasons, this paper applies two simplifications, an eigen-axis rotation and a finite-jerk approximated profile, to derive the solution in an analytical manner. The resulting attitude profile can be used as a feedforward or reference input to on-board attitude controller, and it can enhance spacecraft agility. Equations of attitude command profile are derived in two general boundary conditions: rest-to-rest maneuver and spin-to-spin maneuver. Simulation results demonstrate that the initial and final boundary conditions, in terms of time, attitude, and angular velocities, are well satisfied with the proposed analytical solution. The derived attitude command generation algorithm may be used to minimize a number of parameters to be uploaded to spacecraft or to automate a sequence of attitude command generation on-board.

Design Problem of Automated Warehouse Systems Subject to Minimum Cost and Maximum Throughput

  • Ro, In Kyu;Lee, Hyoung Seok
    • Journal of Korean Society for Quality Management
    • /
    • v.16 no.2
    • /
    • pp.99-110
    • /
    • 1988
  • This study is concerned with a design algorithm to minimize the investment as well as maximize the throughput in automated warehouse system. A simulation model is designed and a solution methodology is proposed. The experiment, are conducted for the cases with 100, 90, 80, 70, 60, 50 and 0 % dual command policies in terms of the important factors such as the crane velocity, the height of system and the rack utilization. The results indicate that the throughput is slightly decreased when the ratio of dual command is decreased and the other characteristics however are not affected. The result also shows that the optimal rack should be designed for a crane to take the same amount of travel time for horizontal and vertical movement.

  • PDF

Obstacle Avoidance and Planning using Optimization of Cost Fuction based Distributed Control Command (분산제어명령 기반의 비용함수 최소화를 이용한 장애물회피와 주행기법)

  • Bae, Dongseog;Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.3
    • /
    • pp.125-131
    • /
    • 2018
  • In this paper, we propose a homogeneous multisensor-based navigation algorithm for a mobile robot, which is intelligently searching the goal location in unknown dynamic environments with moving obstacles using multi-ultrasonic sensor. Instead of using "sensor fusion" method which generates the trajectory of a robot based upon the environment model and sensory data, "command fusion" method by fuzzy inference is used to govern the robot motions. The major factors for robot navigation are represented as a cost function. Using the data of the robot states and the environment, the weight value of each factor using fuzzy inference is determined for an optimal trajectory in dynamic environments. For the evaluation of the proposed algorithm, we performed simulations in PC as well as real experiments with mobile robot, AmigoBot. The results show that the proposed algorithm is apt to identify obstacles in unknown environments to guide the robot to the goal location safely.

The Design of 2-DOF Controller with Robust Tracking Performance through Feedforward Compensation (전방향 보상을 통한 강건추종 성능을 갖는 2-자유도 제어기 설계)

  • 윤장희;조창호;이상철;조도현;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.421-421
    • /
    • 2000
  • In this paper, robust two-degree-of-freedom controller for satellite antenna system which tracks reference signal is designed. Two-degree-of-freedom controller consists of a prefilter and a feedback controller to solve trade-off between robust stability and command response. The feedback controller is designed from specifications like stability, disturbance rejection and robustness via H$_{\infty}$ design technique. In the sequel, H$_2$ optimal prefilter is introduced to improve the command response. This suggests a two-step design, with different types of performance specifications at each stage. In practical problems, this may easily lead to a prefilter of unacceptably high order. In order to avoid high order prefilter we use a particular structure in which both the prefilter and the feedback controller share the same dynamics. H$_2$-prefilter technique proposed in this paper is verified by simulation.

  • PDF

A Simulation Study for Optimizing the Functionality of an Automated Storage and Retrieval System (자동창고 시스템의 최적안 도출을 위한 모의실험적 연구)

  • Kim, Moon Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.505-511
    • /
    • 2014
  • The functional role of warehouses in modern industry is changing from an established concept of storage to a concept of circulation. The target of this study is to improve the stacker crane's efficiency for the internal operations of the Automated Storage and Retrieval System (AS/RS). Eight operating schemes are proposed under the combination of three conditions, namely, the storing method, the layout type, and the sequence of command execution. The moving distance of the stacker crane is calculated using the same gateway data through a simulation based on a C# program. The optimal operating scheme is proposed based on the analyzed simulation results. In conclusion, the combination of conditions of random storage, two-way type warehouse, and dual command execution elicits optimum results in travel efficiency for the stacker crane.

An Economic Design of a k-out-of-n System

  • Yun, Won-Young;Kim, Gue-Rae;Gopi Chattopadhyay
    • International Journal of Reliability and Applications
    • /
    • v.4 no.2
    • /
    • pp.51-56
    • /
    • 2003
  • A k-out-of-n system with n identical and independent components is considered in which the components takes two types of function: 0 (open-circuit) or 1 (closed) on command (e.g. electromagnetic relays and solid state switches). Components are subject to two types of failure on command: failure to close or failure to open. In our k-out-of-n system, failure of (n-k)+1 or more components to close causes to the close failure of the system, or failure of k or more components to open causes the open failure of the system. The long-run average cost rate is obtained. We find the optimal k minimizing the long run average cost rate for given n. A numerical example is presented.

  • PDF

Locally optimal trajectory planning for redundant robot manipulators-approach by manipulability (여유 자유도 로봇의 국부 최적 경로 계획)

  • Lee, Ji-Hong;Lee, Han-Gyu;Yoo, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1136-1139
    • /
    • 1996
  • For on-line trajectory planning such as teleoperation it is desirable to keep good manipulability of the robot manipulators since the motion command is not given in advance. To keep good manipulability means the capability of moving any arbitrary directions of task space. An optimization process with different manipulability measures are performed and compared for a redundant robot system moving in 2-dimensional task space, and gives results that the conventional manipulability ellipsoid based on the Jacobian matrix is not good choice as far as the optimal direction of motion is concerned.

  • PDF

지지부 위치와 벽면 두께변화에 따른 구형 인공위성 추진제 탱크의 강도해석

  • 한근조;전언찬;김중완;안성찬;심재준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.528-532
    • /
    • 1997
  • The structure of satellite was of six parts of control system, power system, thermal control system, remote measurement command system, propellant system and thrust system. In these parts, propellant system consists of propellant tank and thrust device. What we want to perform is optimum design to minimaize the weight of propellant tank. In order to design optimal propellant tank, several parameters should be adopted form the tank geometry like the relative location of the lug and variation of the wall thickness. So the analysis was executed by finite element analysis for finding optimal design parameters. The structure was devided into 3 parts, the initial thickness zone, the transitional zone, and the weak zone,whose effects on the pressure vessel strength was investigated. Finally the optimal lug location and the three zone thickness were obtained and the weight was compared with the uniform thickness vessel.

  • PDF