• Title/Summary/Keyword: optimal capacity

Search Result 1,695, Processing Time 0.036 seconds

Optimal Route Location using Possible Traffic Capacity and Virtual Running and Application at Road Design in the City Centre (도심지 도로설계에서 가능교통량과 가상 주행을 통한 최적노선선정)

  • Choi, Hyun;Song, Suck-Jin;Kang, In-Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.4 s.34
    • /
    • pp.39-46
    • /
    • 2005
  • This paper use virtual running after possible traffic capacity application for optimal route location. General road is designed the design after we examine an alternate adequacy investigation and an execution design sufficiently. Various road user's requirement must be reflected from the beginning. But it is difficult to contain the various suitable design criteria because we consider the existing 2-dimension element. First of all, this study chose optimal route, used traffic assignment and 3D simulation. Then selected optimal route through the consistent road construction by analyzing road driving simulation of 3-dimension data and the urban landscape. possible traffic capacity and virtual running will be able to do the urban landscape analysis harmonizing with the environment; equally, it could be objectively solve the problem of a civil appeal.

  • PDF

Optimal Dual Pricing and Passenger Safety Level for Cruise Revenue Management

  • Cho, Seong-Cheol;Zhang, Mengfei
    • Journal of Navigation and Port Research
    • /
    • v.41 no.2
    • /
    • pp.63-70
    • /
    • 2017
  • Despite the remarkable continual growth of the world cruise industry, studies have yet to be attempted on many revenue management problems in cruise operations. This paper suggests two schemes that can be easily applied to cruise revenue management: optimal dual pricing and passenger safety level. In optimal dual pricing, a pair of higher and lower prices is applied to cabin reservation through market segmentation. This scheme can be executed with a linear price-response function for the current unreserved cabins. A cruise line could benefit from this scheme to maximize reservation revenue while attaining full occupancy. The dual pricing scheme is also devised to produce only integer demands to suit real management practices. The life boat capacity is an additional service capacity unique to the cruise industry, catering to passengers' safety. The concept of passenger safety level is defined and computed for any passenger life boat capacity of a cruise ship. It can be used to evaluate the passenger safety of a cruise ship in operation, as well as to determine the number of life boat seats required for a new cruise ship. Hypothetical examples are used to illustrate the operation of these two schemes.

A Study on Optimal Flywheel Capacity Estimation for Ulleung-do Power System (울릉도 계통에 대한 플라이휠 최적 용량 산정에 관한 연구)

  • Choi, Seong-Won;Lee, Han-Sang;Lee, Jung-Pil;Han, Sang-Chul;Sung, Tae-Hyun;Han, Young-Heui;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.606-607
    • /
    • 2007
  • This paper is about optimal flywheel capacity estimation for Ullueng-do power system. The power system of Ullueng-do has some differences with other island power system in Korea. It includes wind generator, hydro-generators as well as diesel generators. There are some problems on 600kW wind generator. Because of frequent drop of wind generator, the Ulleung-do power system have been threatened on frequency. The power frequency is 60Hz, and it should be between 59.9 and 60.1Hz. However, since the electrical inertia is small and the weight of wind generation is relatively high, generator drop of wind generation might make the power frequency out of boundary. In this paper, the flywheel energy storage system is assumed to be installed on Ulleung-do power system. Then, the maximum wind generation capacity and the optimal superconducting flywheel energy storage system capacity is estimated by the transient stability simulations.

  • PDF

Optimal Sizing of Distributed Power Generation System based on Renewable Energy Considering Battery Charging Method (배터리 충전방식을 고려한 신재생에너지 기반 분산발전시스템의 용량선정)

  • Kim, Hye Rim;Kim, Tong Seop
    • Plant Journal
    • /
    • v.17 no.3
    • /
    • pp.34-36
    • /
    • 2021
  • The interest in renewable energy-based distributed power generation systems is increasing due to the recognitions of the breakthrough of existing centralized power generation, energy conversion, and environmental problems. In this study, the optimal capacity was selected by simulating a distributed power generation system based on PV and WT using lead acid batteries as the energy storage system. CHP was adopted as the existing power source, and the optimal capacity of the system was derived through MOGA according to the operating modes(full load/part load) of the existing power source. In addition, it was confirmed that the battery life differs when the battery charging method is changed at the same battery capacity. Therefore, for economical and stable power supply and demand, the capacity selection of the distributed generation system considering the battery charging method should be performed.

Discrete-Time Gaussian Interfere-Relay Channel

  • Moon, Kiryang;Yoo, Do-Sik;Oh, Seong-Jun
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.299-310
    • /
    • 2016
  • In practical wireless relay communication systems, non-destination nodes are assumed to be idle not receiving signals while the relay sends messages to a particular destination node, which results in reduced bandwidth efficiency. To improve the bandwidth efficiency, we relax the idle assumption of non-destination nodes and assume that non-destination nodes may receive signals from sources. We note that the message relayed to a particular node in such a system gives rise to interference to other nodes. To study such a more general relay system, we consider, in this paper, a relay system in which the relay first listens to the source, then routes the source message to the destination, and finally produces interference to the destination in sending messages for other systems. We obtain capacity upper and lower bounds and study the optimal method to deal with the interference as well as the optimal routing schemes. From analytic results obtained, we find the conditions on which the direct transmission provides higher transmission rate. Next, we find the conditions, by numerical evaluation of the theoretical results, on which it is better for the destination to cancel and decode the interference. Also we find the optimal source power allocation scheme that achieves the lower bound depending on various channel conditions. We believe that the results provided in this paper will provide useful insights to system designers in strategically choosing the optimal routing algorithms depending on the channel conditions.

Error Rate and Capacity Analysis for Incremental Hybrid DAF Relaying using Polar Codes

  • Madhusudhanan, Natarajan;Venkateswari, Rajamanickam
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.291-302
    • /
    • 2018
  • The deployment of an incremental hybrid decode-amplify and forward relaying scheme is a promising and superior solution for cellular networks to meet ever-growing network traffic demands. However, the selection of a suitable relaying protocol based on the signal-to-noise ratio threshold is important in realizing an improved quality of service. In this paper, an incremental hybrid relaying protocol is proposed using polar codes. The proposed protocol achieves a better performance than existing turbo codes in terms of capacity. Simulation results show that the polar codes through an incremental hybrid decode-amplify-and-forward relay can provide a 38% gain when ${\gamma}_{th(1)}$ and ${\gamma}_{th(2)}$ are optimal. Further, the channel capacity is improved to 17.5 b/s/Hz and 23 b/s/Hz for $2{\times}2$ MIMO and $4{\times}4$ MIMO systems, respectively. Monte Carlo simulations are carried out to achieve the optimal solution.

A Study of Optimum Capacity of Battery Energy Storage System Linked PV (태양광 연계형 배터리 에너지 저장장치의 최적 용량 산정)

  • Baek, Min-Kyu;Park, Jong-Bae;Son, Sung-Yong;Shin, Ha-Sang;Park, Yong-Gi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.38-45
    • /
    • 2018
  • In September 2016, the government decided to apply a REC 5.0 weighting to solar-battery ESS to increase the supply of renewable energy. In this paper, we calculated the optimal capacity of battery ESS which maximizes the revenue when solar is linked with battery ESS. In the case study, the optimal capacity was calculated by applying the conservative REC price, and we studied sensitivity analysis about battery price and real-time REC price.

Optimal File Migration Policies in Distributed Database Systems (분산 데이터베이스 시스템에서의 최적 파일 이동 정책)

  • 이기태;김재련
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.33
    • /
    • pp.1-10
    • /
    • 1995
  • The allocation of files is essential to the efficiency and effectiveness of a distributed system that must meet geographically dispersed data processing demands. In this paper, we address an optimization model that generates optimal file migration policies in distributed database systems. The proposed model is a more generalized model that includes system's capacity constraints - computing sites' storage capacity and communication networks' capacity - which have not taken into consideration in previous researches. Using this model, we can establish initial file allocation, file reallocation and file migration polices that minimize a system operating cost under system's capacity constraints at an initial system design or reorganization point The proposed model not only can be adopted by small-sized systems but also provides a foundation for effective and simple heuristics for adaptive file migration in large systems.

  • PDF

An Evaluation of Chiller Control Strategy in Ice Storage System for Cost-Saving Operation (운전비 절감을 위한 빙축열시스템 냉동기 운전기법 평가)

  • Lee, Kyoung-Ho;Choi, Byoung-Youn;Lee, Sang-Ryoul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2008
  • This paper presents simulated and experimental test results of optimal control algorithm for an encapsulated ice thermal storage system with full capacity chiller operation. The algorithm finds an optimal combination of a chiller and/or a storage tank operation for the minimum total operation cost through a cycle of charging and discharging. Dynamic programming is used to find the optimal control schedule. The conventional control strategy of chiller-priority is the baseline case for comparing with the optimal control strategy through simulation and experimental test. Simulation shows that operating cost for the optimal control with chiller on-off operation is not so different from that with chiller part load capacity control. As a result from the experimental test, the optimal control operation according to the simulated operation schedule showed about 14 % of cost saving compared with the chiller-priority control.

Optimal Polling Method for Improving PCF MAC Performance in IEEE 802.11 Wireless LANs (IEEE 802.11 무선랜 시스템에서 PCF 프로토콜의 성능을 향상시키기 위한 최적의 폴링 방식)

  • Choi, Woo-Yong;Lee, Sang-Wan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • A modified PCF(Point Coordination Function) protocol with the optimal polling sequence is defined in detail and shown to improve the efficiency of the conventional PCF protocol in IEEE 802.11 wireless LAN standard. The problem for the optimal polling sequence is formulated as TSP(Travelling Salesman Problem) with the distance values of 1's or 0's. Numerical examples show that the optimal polling sequence increases the capacity of the real-time service such as VoIP(Voice over Internet Protocol).