• Title/Summary/Keyword: optimal boundary

Search Result 609, Processing Time 0.028 seconds

Dynamic behavior of submerged floating tunnels at the shore connection considering the use of flexible joints

  • Seok-Jun Kang;Minhyeong Lee;Jun-Beom An;Dong-Hyuk Lee;Gye-Chun Cho
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.101-112
    • /
    • 2023
  • When a submerged floating tunnel is connected to the ground, there is a risk of stress concentration at the shore connection owing to the displacement imbalance caused by low confinement pressures in water and high confinement pressures in the ground. Here, the effects of the boundary condition and stiffness of the joints installed at the shore connection on the behaviors of a submerged floating tunnel and its shore connection were analyzed using a numerical method. The analysis results obtained with fixed and ground boundaries were similar due to the high stiffness of the ground boundary. However, the stability of the shore connection was found to be improved with the ground boundary as a small displacement was allowed at the boundary. The effect of the joint stiffness was evaluated by investigating the dynamic behavior of the submerged floating tunnel, the magnitude of the load acting on the bored tunnel, and the stress distribution at the shore connection. A lower joint stiffness was found to correspond to more effective relief of the stress concentration at the shore connection. However, it was confirmed that joints with low stiffness also increase the submerged floating tunnel displacement and decrease the frequency of the dynamic behavior, causing a risk of increased resonance when wave loads with low frequency are applied. Therefore, it is necessary to derive the optimal joint stiffness that can achieve both stress concentration relief and resonance prevention during the design of shore connections to secure their dynamic stability.

Thermal and Flow Analysis of the Flat Tube with Micro-Channels (미세유로를 갖는 납작관의 열·유동 해석)

  • Chung, Kilyoan;Lee, Kwan-Soo;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.978-986
    • /
    • 1999
  • In this study, the general thermal and flow characteristics of flat tube with micro-channels has been studied and the correlation of Nusselt number and friction factor is proposed. The optimal flat tube geometry is determined by optimal design process. It is assumed to be a three dimensional laminar flow in the analysis of thermal and flow characteristics. The periodic boundary condition is applied since the geometry of flat tube with micro-channels shows uniform cross-section in primary flow direction. Local Nusselt number is examined for thermal characteristics of each membrane, and module average Nusselt number and friction factor are calculated to determine the characteristics of the heat transfer and pressure drop in overall flat tube with microchannels. The correlations between Nusselt number and friction factor are given by Reynolds number, aspect ratio of membranes, and the width of flat tube. ALM (Augmented Lagrangian Multiplier) method is applied to the correlations to determine an optimal shape of flat tube. It is shown that the optimal aspect ratio of flat tube is approximately 1.0, irrespective of the width of flat tube and Reynolds number.

타부탐색, 메모리, 싸이클 탐지를 이용한 배낭문제 풀기

  • 고일상
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.514-517
    • /
    • 1996
  • In solving multi-level knapsack problems, conventional heuristic approaches often assume a short-sighted plan within a static decision enviornment to find a near optimal solution. These conventional approaches are inflexible, and lack the ability to adapt to different problem structures. This research approaches the problem from a totally different viewpoint, and a new method is designed and implemented. This method performs intelligent actions based on memories of historic data and learning. These actions are developed not only by observing the attributes of the optimal solution, the solution space, and its corresponding path to the optimal solution, but also by applying human intelligence, experience, and intuition with respect to the search strategies. The method intensifies, or diversifies the search process appropriately in time and space. In order to create a good neighborhood structure, this method uses two powerful choice rules that emphasize the impact of candidate variables on the current solution with respect to their profit contribution. A side effect of so-called "pseudo moves", similar to "aspirations", supports these choice rules during the evaluation process. For the purpose of visiting as many relevant points as possible, strategic oscillation between feasible and infeasible solutions around the boundary is applied for intensification. To avoid redundant moves, short-term (tabu-lists), intermediate-term (cycle detection), and long-term (recording frequency and significant solutions for diversification) memories are used. Test results show that among the 45 generated problems (these problems pose significant or insurmountable challenges to exact methods) the approach produces the optimal solutions in 39 cases.lutions in 39 cases.

  • PDF

Assessment of velocity-acceleration feedback in optimal control of smart piezoelectric beams

  • Beheshti-Aval, S.B.;Lezgy-Nazargah, M.
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.921-938
    • /
    • 2010
  • Most of studies on control of beams containing piezoelectric sensors and actuators have been based on linear quadratic regulator (LQR) with state feedback or output feedback law. The aim of this study is to develop velocity-acceleration feedback law in the optimal control of smart piezoelectric beams. A new controller which is an optimal control system with velocity-acceleration feedback is presented. In finite element modeling of the beam, the variation of mechanical displacement through the thickness is modeled by a sinus model that ensures inter-laminar continuity of shear stress at the layer interfaces as well as the boundary conditions on the upper and lower surfaces of the beam. In addition to mechanical degrees of freedom, one electric potential degree of freedom is considered for each piezoelectric element layer. The efficiency of this control strategy is evaluated by applying to an aluminum cantilever beam under different loading conditions. Numerical simulations show that this new control scheme is almost as efficient as an optimal control system with state feedback. However, inclusion of the acceleration in the control algorithm increases practical value of a system due to easier and more accurate measurement of accelerations.

A Study on the Space Boundary Information Interoperability Improvement of IFC Data for Building Energy Performance Assessment (IFC 데이터의 건물에너지 성능평가를 위한 공간경계정보 호환성 향상 연구)

  • Choi, Jungsik;Kim, Inhan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.129-137
    • /
    • 2014
  • Due to the increase of carbon dioxide and building regulations, BIM is considered a way of low-carbon and eco-friendly building development for its many advantages. The advantages can be maximized with Open BIM since it can produce optimal results for various purposes of energy performance assessment. However there are some problems in data interoperability in the process of Open-BIM based energy performance assessment. To solve such problems, this study focuses on space boundary information interoperability between IFC of Open BIM and IDF format of Energy Plus known as the most accurate and diverse energy performance assessment. The study analyzes the analogous study then figures out the problems of IFC based energy performance analysis, and suggests the way of interoperability. Finally, the development of automation program makes this way much more effective. The study of IFC data interoperability is useful for improving the reliability of Open-BIM based energy assessment.

Analysis of Topological Effects of Phase-Shifting Mask by Boundary Element Method (경계요소법을 이용한 위상변이 마스크의 단차 효과 분석)

  • Lee, Dong-Hoon;Kim, Hyun-Jun;Lee, Seung-Gol;Lee, Jong-Ung
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.11
    • /
    • pp.33-44
    • /
    • 1999
  • The boundary element method was newly implemented into an optical lithography simulator so that it could evaluate rigorously the topological effects of 2dimensional phase-shifting masks. Both transparent and periodic boundary conditions were applied for the method, and the continuity conditions were used for treating interface nodes. The accuracy of the module developed for simulating aerial images was verified by comparison with analytic solutions and published results. In addition, it was found that our simulator would be more efficient than the conventional method based on the rigorous coupled wave analysis in views of the convergence and the calculation speed. Finally, the optimal design of two phase-shifting masks was performed.

  • PDF

Effects of Periodic Blowing Through a Spanwise Slot on a Turbulent Boundary Layer (II) - Effects of Blowing Frequency - (슬릿을 통한 주기적 국소 가진이 난류경계층에 미치는 영향 (II) - 분사 주파수의 효과 -)

  • Kim, Kyoung-Youn;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.41-51
    • /
    • 2004
  • A direct numerical simulation is performed to analyze the effects of a localized time-periodic blowing on a turbulent boundary layer flow at R $e_{+}$=300. Main emphasis is placed on the blowing frequency effect on near-wall turbulent flow structures at downstream. Wall-normal velocity on a spanwise slot is varied periodically at different frequencies (0.004$\leq$ $f^{+}$$\leq$0.080). The amplitude of periodic blowing is $A^{+}$=0.5 in wall nit, which corresponds to the value of $v_{rms}$ at $y^{+}$=15 without blowing. The frequency responses are scrutinized by examining the phase or time-averaged turbulent statistics. The optimal frequency ( $f^{+}$=0.03) is observed, where maximum increase in Reynolds shear stress, streamwise vorticity fluctuations and energy redistribution occurs. The phase-averaged stretching and tilting term are investigated to analyze the increase of streamwise vorticity fluctuations which are closely related to turbulent coherent structures. It is found that the difference between PB and SB at a high blowing frequencies is negligible.e.e.

Acoustic Analysis of Axial Fan using Kirchhoff Surface (Kirchhoff 면을 이용한 홴소음 해석)

  • Park, Yong-Min;Song, Woo-Seog;Lee, Seung-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.701-713
    • /
    • 2003
  • The BEM is a highly efficient method in the sense of economical computation. However, boundary integration is not easy for the complex geometry and moving surface, e.g. a rotating blade. Thus, Kirchhoff surface is designed in an effort to overcome the difficulty resulting from complex boundary conditions. A Kirchhoff surface is a fictitious surface which envelopes acoustic sources of main concern. Acoustic sources may be distributed on each Kirchhoff surface element according to their acoustic characteristics. In this study, an axial fan is assumed to have unsteady loading noise as a dominant source. Dipole sources can be modeled to solve the FW-H equation. Acoustic field is then computed by determining Kirchhoff surface on which near-field is implemented, to analyze the effect of Kirchhoff surface on it. The optimal shape and the location of Kirchhoff surface are discussed by comparing with experimental data acquired in an anechoic chamber.

Algorithm for extracting region of interest in medical images using image processing techniques (영상처리 기법을 이용한 의료 영상에서 관심영역 추출 알고리즘)

  • Cho, Young-bok;Woo, Sung-hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.295-298
    • /
    • 2018
  • The proposed paper proposes an algorithm that automatically extracts the region of interest using image processing techniques for medical images. In general, the robust boundary segmentation technique provides robust and accurate segmentation results in object boundaries with various noise and direction generated during image acquisition through optimal segmentation of the edges considering noise characteristics and directionality in noise images. In this paper, it is possible to apply adaptive filter type and size to the structural information of the image object and apply it to the boundary division of various object objects. In addition, it is possible to divide the boundary between various noise images such as an ultrasound image and an optical image.

  • PDF

Optimum design of blank shape for press forming (최적 프레스가공을 위한 블랭크형상 설계)

  • Kim, Yeong-Seok;Park, Gi-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1141-1148
    • /
    • 1997
  • In the stamping industry the blank shape to be stamped into a designed shape has been conventionally determined from the try out process by the press engineers. The work needs a lot of time and thus leads a loss of productivity. In this study boundary element method for 2-dimensional potential problem was used to design optimum blank shapes for irregular press forming. Here we assumed that the blank is controlled by blank holder only and material flow at blank holder was under potential flow. The developed PC code for designing the optimum blank shape shows that the blank shapes for optimal drawing can be calculated within a few minute in pentium PC and the calculated shapes agree well with the experiments. However the application of this method is constrained only to the pressed product with flat bottom.