• Title/Summary/Keyword: optimal algorithm

Search Result 6,798, Processing Time 0.033 seconds

The hybrid of artificial neural networks and case-based reasoning for intelligent diagnosis system (인공 신경경망과 사례기반추론을 혼합한 지능형 진단 시스템)

  • Lee, Gil-Jae;Kim, Chang-Joo;Ahn, Byung-Ryul;Kim, Moon-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.15B no.1
    • /
    • pp.45-52
    • /
    • 2008
  • As the recent development of the IT services, there is a urgent need of effective diagnosis system to present appropriate solution for the complicated problems of breakdown control, a cause analysis of breakdown and others. So we propose an intelligent diagnosis system that integrates the case-based reasoning and the artificial neural network to improve the system performance and to achieve optimal diagnosis. The case-based reasoning is a reasoning method that resolves the problems presented in current time through the past cases (experience). And it enables to make efficient reasoning by means of less complicated knowledge acquisition process, especially in the domain where it is difficult to extract formal rules. However, reasoning by using the case-based reasoning alone in diagnosis problem domain causes a problem of suggesting multiple causes on a given symptom. Since the suggested multiple causes of given symptom has the same weight, the unnecessary causes are also examined as well. In order to resolve such problems, the back-propagation learning algorithm of the artificial neural network is used to train the pairs of the causes and associated symptoms and find out the cause with the highest weight for occurrence to make more clarified and reliable diagnosis.

Optimized Handoff Scheme with Fuzzy logic in Heterogeneous Vehicular Mobile Networks (이종의 차량 모바일 네트워크에서 퍼지 로직을 이용한 최적의 핸드오프 기법)

  • Roh, Youngsam;Jeong, Jongpil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.1
    • /
    • pp.35-46
    • /
    • 2012
  • The development of wireless communication systems has resulted in the availability of several access technologies at any geographic area, such as 3G networks, wireless local area networks (WLANs) and wireless broadband networks. The development of these technologies is provided for users who have experienced mobile network environments which are slow or fast-movement environment and change distance between the AP(Access Point). This paper describes network performance issues in various environmental changes. Also, Fuzzy logic is applied to evaluate the performance in vehicle networks around users' environmental factors to focusing on the minimizing of transfer time and costs. First, WLAN and 3G networks fixed distance between AP, Second, WLAN and 3G networks random distance between APs, finally above two environmental with vehicle Ad hoc networks is analyzed. These V2I and V2V environmental condition are assumed. Results which based on Fuzzy logic suggest an optimal performance in vehicle network environments according to vehicle speed and distance between APs. Proposed algorithm shows 21% and 13% improvement of networks performance in V2I and V2V environment.

A Study on Optimal Shape-Size Index Extraction for Classification of High Resolution Satellite Imagery (고해상도 영상의 분류결과 개선을 위한 최적의 Shape-Size Index 추출에 관한 연구)

  • Han, You-Kyung;Kim, Hye-Jin;Choi, Jae-Wan;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • High spatial resolution satellite image classification has a limitation when only using the spectral information due to the complex spatial arrangement of features and spectral heterogeneity within each class. Therefore, the extraction of the spatial information is one of the most important steps in high resolution satellite image classification. This study proposes a new spatial feature extraction method, named SSI(Shape-Size Index). SSI uses a simple region-growing based image segmentation and allocates spatial property value in each segment. The extracted feature is integrated with spectral bands to improve overall classification accuracy. The classification is achieved by applying a SVM(Support Vector Machines) classifier. In order to evaluate the proposed feature extraction method, KOMPSAT-2 and QuickBird-2 data are used for experiments. It is demonstrated that proposed SSI algorithm leads to a notable increase in classification accuracy.

A Study on Smart Ground Resistance Measurement Technology Based on Aduino (아두이노 기반 IT융합 스마트 대지저항 측정 기술 연구)

  • Kim, Hong Yong
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.684-693
    • /
    • 2021
  • Purpose: The purpose is to establish a safe facility environment from abnormal voltages such as lightning by developing a smart land resistance measuring device that can acquire real-time land resistance data using Arduino. Method: This paper studied design models and application cases by developing a land resistance acquisition and analysis system with Arduino and a power line communication (PLC) system. Some sites in the wind power generation complex in Gyeongsangnam-do were selected as test beds, and real-time land resistance data applied with new technologies were obtained. The electrode arrangement adopted a smart electrode arrangement using a combination of a Wenner four electrode arrangement and a Schlumberger electrode arrangement. Result: First, the characteristic of this technology is that the depth of smart multi-electrodes is organized differently to reduce the error range of the acquired data even in the stratigraphic structure with specificity between floors. Second, IT convergence technology was applied to enable real-time transmission and reception of information on land resistance data acquired from smart ground electrodes through the Internet of Things. Finally, it is possible to establish a regular management system and analyze big data accumulated in the server to check the trend of changes in various elements, and to model the optimal ground algorithm and ground system design for the IT convergence environment. Conclusion: This technology will reduce surge damage caused by lightning on urban infrastructure underlying the 4th industrial era and design an optimized ground system model to protect the safety and life of users. It is also expected to secure intellectual property rights of pure domestic technology to create jobs and revitalize our industry, which has been stagnant as a pandemic in the post-COVID-19 era.

A Study on Management of Student Retention Rate Using Association Rule Mining (연관관계 규칙을 이용한 학생 유지율 관리 방안 연구)

  • Kim, Jong-Man;Lee, Dong-Cheol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.6
    • /
    • pp.67-77
    • /
    • 2018
  • Currently, there are many problems due to the decline in school-age population. Moreover, Korea has the largest number of universities compared to the population, and the university enrollment rate is also the highest in the world. As a result, the minimum student retention rate required for the survival of each university is becoming increasingly important. The purpose of this study was to examine the effects of reducing the number of graduates of education and the social climate that prioritizes employment. And to determine what the basic direction is for students to manage the student retention rate, which can be maintained from admission to graduation, to determine the optimal input variables, Based on the input parameters, we will make associative analysis using apriori algorithm to collect training data that is most suitable for maintenance rate management and make base data for development of the most efficient Deep Learning module based on it. The accuracy of Deep Learning was 75%, which is a measure of graduation using decision trees. In decision tree, factors that determine whether to graduate are graduated from general high school and students who are female and high in residence in urban area have high probability of graduation. As a result, the Deep Learning module developed rather than the decision tree was identified as a model for evaluating the graduation of students more efficiently.

An Inventory Model for Deteriorating Products with Ordering Cost inclusive of a Freight Cost under Trade Credit (신용거래 하에 운송비용이 포함된 주문 비용을 고려한 퇴화성 제품의 재고 모형)

  • Shinn, Seong-Whan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.353-360
    • /
    • 2019
  • Trade credit is being used as a price discrimination strategy by the suppliers in order to increase the customer's demand. From the viewpoint of the customer, if delayed payment is allowed for a certain period of time from the supplier, the effect of reducing the inventory carrying cost will positively affect the customer's order quantity. Also, in deriving the economic order quantity(EOQ) formula, it is tacitly assumed that the customer's ordering cost is a fixed cost. However in many business transactions, the customer pays the freight cost for the transportation of his order and so, the customer's ordering cost contains not only a fixed cost but also a freight cost which is a function of the order size. Therefore, in this study, we analyzed the inventory model which considers that the customer's ordering cost contains not only a fixed cost but also a freight cost which is a function of the customer's order size when the supplier permits a delay in payments. For the analysis, it is also assumed that inventory is exhausted not only by customer's demand but also by deterioration. Investigation of the properties of an optimal solution allows us to develop an algorithm whose validity is illustrated using an example problem.

Three Dimensional Measurement of Ideal Trajectory of Pedicle Screws of Subaxial Cervical Spine Using the Algorithm Could Be Applied for Robotic Screw Insertion

  • Huh, Jisoon;Hyun, Jae Hwan;Park, Hyeong Geon;Kwak, Ho-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.376-381
    • /
    • 2019
  • Objective : To define optimal method that calculate the safe direction of cervical pedicle screw placement using computed tomography (CT) image based three dimensional (3D) cortical shell model of human cervical spine. Methods : Cortical shell model of cervical spine from C3 to C6 was made after segmentation of in vivo CT image data of 44 volunteers. Three dimensional Cartesian coordinate of all points constituting surface of whole vertebra, bilateral pedicle and posterior wall were acquired. The ideal trajectory of pedicle screw insertion was defined as viewing direction at which the inner area of pedicle become largest when we see through the biconcave tubular pedicle. The ideal trajectory of 352 pedicles (eight pedicles for each of 44 subjects) were calculated using custom made program and were changed from global coordinate to local coordinate according to the three dimensional position of posterior wall of each vertebral body. The transverse and sagittal angle of trajectory were defined as the angle between ideal trajectory line and perpendicular line of posterior wall in the horizontal and sagittal plane. The averages and standard deviations of all measurements were calculated. Results : The average transverse angles were $50.60^{\circ}{\pm}6.22^{\circ}$ at C3, $51.42^{\circ}{\pm}7.44^{\circ}$ at C4, $47.79^{\circ}{\pm}7.61^{\circ}$ at C5, and $41.24^{\circ}{\pm}7.76^{\circ}$ at C6. The transverse angle becomes more steep from C3 to C6. The mean sagittal angles were $9.72^{\circ}{\pm}6.73^{\circ}$ downward at C3, $5.09^{\circ}{\pm}6.39^{\circ}$ downward at C4, $0.08^{\circ}{\pm}6.06^{\circ}$ downward at C5, and $1.67^{\circ}{\pm}6.06^{\circ}$ upward at C6. The sagittal angle changes from caudad to cephalad from C3 to C6. Conclusion : The absolute values of transverse and sagittal angle in our study were not same but the trend of changes were similar to previous studies. Because we know 3D address of all points constituting cortical shell of cervical vertebrae. we can easily reconstruct 3D model and manage it freely using computer program. More creative measurement of morphological characteristics could be carried out than direct inspection of raw bone. Furthermore this concept of measurement could be used for the computing program of automated robotic screw insertion.

Capacity Design of Eccentrically Braced Frame Using Multiobjective Optimization Technique (다목적 최적화 기법을 이용한 편심가새골조의 역량설계)

  • Hong, Yun-Su;Yu, Eunjong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.419-426
    • /
    • 2020
  • The structural design of the steel eccentrically braced frame (EBF) was developed and analyzed in this study through multiobjective optimization (MOO). For the optimal design, NSGA-II which is one of the genetic algorithms was utilized. The amount of structure and interfloor displacement were selected as the objective functions of the MOO. The constraints include strength ratio and rotation angle of the link, which are required by structural standards and have forms of the penalty function such that the values of the objective functions increase drastically when a condition is violated. The regulations in the code provision for the EBF system are based on the concept of capacity design, that is, only the link members are allowed to yield, whereas the remaining members are intended to withstand the member forces within their elastic ranges. However, although the pareto front obtained from MOO satisfies the regulations in the code provision, the actual nonlinear behavior shows that the plastic deformation is concentrated in the link member of a certain story, resulting in the formation of a soft story, which violates the capacity design concept in the design code. To address this problem, another constraint based on the Eurocode was added to ensure that the maximum values of the shear overstrength factors of all links did not exceed 1.25 times the minimum values. When this constraint was added, it was observed that the resulting pareto front complied with both the design regulations and capacity design concept. Ratios of the link length to beam span ranged from 10% to 14%, which was within the category of shear links. The overall design is dominated by the constraint on the link's overstrength factor ratio. Design characteristics required by the design code, such as interstory drift and member strength ratios, were conservatively compared to the allowable values.

The Analysis of Changes in East Coast Tourism using Topic Modeling (토핑 모델링을 활용한 동해안 관광의 변화 분석)

  • Jeong, Eun-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.489-495
    • /
    • 2020
  • The amount of data is increasing through various IT devices in a hyper-connected society where the 4th revolution is progressing, and new value can be created by analyzing that data. This paper was collected total 1,526 articles from 2017 to 2019 in central magazines, economic magazines, regional associations, and major broadcasting companies with the keyword "(East Coast Tourism or East Coast Travel) and Gangwon-do" through Bigkinds. It was performed the topic modeling using LDA algorithm implemented in the R language to analyze the collected 1,526 articles. It was extracted keywords for each year from 2017 to 2019, and classified and compared keywords with high frequency for each year. It was setted the optimal number of topics to 8 using Log Likelihood and Perplexity, and then inferred 8 topics using the Gibbs Sampling method. The inferred topics were Gangneung and Beach, Goseong and Mt.Geumgang, KTX and Donghae-Bukbu line, weekend sea tour, Sokcho and Unification Observatory, Yangyang and Surfing, experience tour, and transportation network infra. The changes of articles on East coast tourism was was analyzed using the proportion of the inferred eight topics. As the result, the proportion of Unification Observatory and Mt. Geumgang showed no significant change, the proportion of KTX and experience tour increased, and the proportion of other topics decreased in 2018 compared to 2017. In 2019, the proportion of KTX and experience tour decreased, but the proportion of other topics showed no significant change.

Development and Verification of Active Vibration Control System for Helicopter (소형민수헬기 능동진동제어시스템 개발)

  • Kim, Nam-Jo;Kwak, Dong-Il;Kang, Woo-Ram;Hwang, Yoo-Sang;Kim, Do-Hyung;Kim, Chan-Dong;Lee, Ki-Jin;So, Hee-Soup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.181-192
    • /
    • 2022
  • Active vibration control system(AVCS) for helicopter enables to control the vibration generated from the main rotor and has the superb vibration reduction performance with low weight compared passive vibration reduction device. In this paper, FxLMS algorithm-based vibration control software of the light civil helicopter tansmits the control command calculated using the signals of the tachometer and accelerometers to the circular force generator(CFG) is developed and verified. According to the RTCA DO-178C/DO-331, the vibration control software is developed through the model based design technique, and real-time operation performance is evaluated in PILS(processor in-the loop simulation) and HILS(hardware in-the loop simulation) environments. In particular, the reliability of the software is improved through the LDRA-based verification coverage in the PIL environments. In order to AVCS to light civil helicopter(LCH), the dynamic response characteristic model is obtained through the ground/flight tests. AVCS configuration which exhibits the optimal performance is determined using system optimization analysis and flight test and obtain STC certification.