• 제목/요약/키워드: optical scattering

검색결과 829건 처리시간 0.041초

Radiative Transfer in Highly Thick Media through Rayleigh and Raman Scattering with Atomic Hydrogen

  • Chang, Seok-Jun
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.40.1-40.1
    • /
    • 2021
  • Hydrogen is the most abundant element in the universe, which is, in the cosmological context, attributed to its simplest structure consisting of a proton and an electron. Hydrogen interacts with an electromagnetic wave in astrophysical environments. Rayleigh scattering refers to elastic scattering, where the frequencies of the incident and scattered photons are the same. Rayleigh and resonance scattering is a critical role study Lyman Alpha objects in the early universe. The scattering causes the frequency and spatial diffusion of Lyα. In the case of Raman scattering, the energies of the incident and scattered photons are different. The photons near Lyβ convert to the optical photons near Hα through Raman scattering. The photon scattered by atomic hydrogen can carry both of the properties of the H I region and the emission region. I adopt a Monte Carlo approach to investigate the formation of the various spectral line features through Rayleigh and Raman scattering in highly thick media of atomic hydrogen. In this thesis, I present my works on radiative transfer involving the scattering processes between far UV photon and atomic hydrogen. I introduce scattering processes with atomic hydrogen and the spectral, spatial, and polarized information originating from the scattering.

  • PDF

Temperature Compensation of a Fiber Optic Strain Sensor Based on Brillouin Scattering

  • Cho, Seok-Beom;Lee, Jung-Ju;Kwon, Il-Bum
    • Journal of the Optical Society of Korea
    • /
    • 제8권4호
    • /
    • pp.168-173
    • /
    • 2004
  • Brillouin scattering-based fiber optic sensors are useful to measure strain or temperature in a distributed manner. Since the Brillouin frequency of an optical fiber depends on both the strain and temperature, it is very important to know whether the Brillouin frequency shift is caused by the strain change or temperature change. This article presents a temperature compensation technique of a Brillouin scattering-based fiber optic strain sensor. Both the changes of the Brillouin frequency and the Brillouin gain power is observed for the temperature compensation using a BOTDA sensor system. Experimental results showed that the temperature compensated strain values were highly consistent with actual strain values.

공간 선택적 브릴루앙 산란을 이용한 분포형 광섬유 센서의 실험 (Experiment of Distributed Optical Fiber Sensor Using Spatially-Selective Brillouin Scattering)

  • 서민성;윤승철;현진영;박희갑
    • 한국광학회지
    • /
    • 제17권3호
    • /
    • pp.223-230
    • /
    • 2006
  • 직접 광주파수 변조된 레이저 다이오드를 광원으로 이용하여 공간 선택적 브릴루앙 산란 방식으로 분포형 광섬유 센서를 구성하여 실험하였다. 광주파수가 정현파로 변조된 펌프와 프로브 빛이 광섬유 내로 서로 반대 방향으로 진행하며 중첩되도록 함으로써 광섬유 내 특정 지점에서만 유도 브릴루앙 산란이 발생하도록 하였으며, 변조 주파수를 변화시켜 브릴루앙 이득 피크의 위치를 조절할 수 있었다. 브릴루앙 천이 주파수가 서로 다른 광섬유를 접속한 경우와 광섬유 길이를 따라 온도 분포가 존재하는 경우에 대해 각각 브릴루앙 천이 주파수의 분포를 측정하였다. 브릴루앙 천이 주파수의 온도 변화율은 $1.33MHz/^{\circ}C$로 측정되었다.

Construction of 3D Earth Optical Model for Earth Remote Sensing (Amon-Ra) Instrument at L1 Halo Orbit

  • Ryu, Dong-Ok;Seong, Se-Hyun;Hong, Jin-Suk;Kim, Sug-Whan
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2011년도 한국우주과학회보 제20권1호
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • We present construction of 3D Earth optical Model for in-orbit performance prediction of L1 halo orbiting earth remote sensing instrument; the Albedo Monitor and Radiometer (Amon-Ra) using Integrated Ray Tracing (IRT) computational technique. The 3 components are defined in IRT; 1) Sun model, 2) Earth system model (Atmosphere, Land and Ocean), 3)Amon-Ra Instrument model. In this report, constructed sun model has Lambertian scattering hemisphere structure. The atmosphere is composed of 16 distributed structures and each optical model includes scatter model with both reflecting and transmitting direction respond to 5 deg. intervals of azimuth and zenith angles. Land structure model uses coastline and 5 kinds of vegetation distribution data structure, and its non-Lambertian scattering is defined with the semi-empirical "parametric kernel method" used for MODIS (NASA) missions. The ocean model includes sea ice cap with the sea ice area data from NOAA, and sea water optical model which is considering non-Lambertian sun-glint scattering. The IRT computation demonstrate that the designed Amon-Ra optical system satisfies the imaging and radiometric performance requirement. The technical details of the 3D Earth Model, IRT model construction and its computation results are presented together with future-works.

  • PDF

광학 입자 계수기의 응답특성 및 오계수에 관한 연구 (A Study of Response Characteristics and False Counts in Optical Particle Counter)

  • 안강호;이재헌
    • 대한기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.547-554
    • /
    • 1992
  • 본 연구에서는 Climet사의 백색광원 OPC인 CI226와 PMS사의 laser 광원 OPC인 LAS-X 및 HS-LAS의 응답특성을 측정하여 제작사가 제시한 응답특성과 비교하여 그 정 확성을 논하였으며 아울러 고유량(high flow rate) Clean Room용 OPC인 Climet CI- 7300, Met One 200, Hiac/Royco5120 등 3가지 장치에 관한 오계수의 원인을 박히고자 하였다.

2 파장 라만 산란을 이용한 비침습적 HbA1c 측정 (Non-Invasive HbA1c Measurement Using Two-Wavelength Raman Scattering)

  • 양주란;김형표
    • 센서학회지
    • /
    • 제28권5호
    • /
    • pp.305-310
    • /
    • 2019
  • The purpose of this study is to classify the concentration of HbA1c (glycosylated hemoglobin), which is an indicator in the management of accurate blood glucose level in diabetic patients, using a non-invasive optical property measurement method. To measure the optical properties of HbA1c, the optical source uses LEDs and laser diodes of 400 nm in the visible region and 1450 nm in the nearinfrared region using thermopile to detect the Raman scattering intensity. An HbA1c control solution was used. As a result, the optical properties of 5% (normal) and 9% (abnormal) HbA1c control solutions showed specificity in which the output values were reversed at 850 nm and 950 nm, respectively. This property was applied to distinguish between normal and abnormal values in diabetes. In addition, considering tissue penetration depths for non-invasive measurements, two wavelengths were determined to be effective in distinguishing the concentrations of HbA1c control solutions at 5%, 7%, and 9%.

액상유체 환경하에서 레이저빔의 산란 해석 (Laser Beam Scattering Analysis in Aqueous Environments)

  • 최해운
    • 한국기계가공학회지
    • /
    • 제18권2호
    • /
    • pp.91-95
    • /
    • 2019
  • A new experimental approach is proposed to detect a specific polymer dissolved in a liquid. Distinctive optical properties were found using a laser scattering technique when there is a polymer compound with almost no difference in optical properties (index of refraction) in a liquid phase. The index of refraction, which determines the refraction of light, is obtained by dissolving PCL and PLA. The used samples are biodegradable materials with similar properties and dissolved in a mixture of Chloroform 7: Methanol 3. To predict the optical properties, a 632-nm diode laser was used as the light source of the device, and an integrating sphere was used as the light receiver. Although PCL and PLA had a similar index of refraction of 1.46-1.48, the dissolved PCL showed a relative transmittance of 43%, and the dissolved PLA had a relative transmittance of 34%. The difference in optical properties of the pure polymer compound in the solid state or liquid state is not significantly different, and the difference in the dissolved state in the specific solvent is remarkable because the solubility differs in a specific solution and is randomly distributed.

Tip Enhanced Nano Raman Scattering in Graphene

  • Mun, Seok Jeong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.87.2-87.2
    • /
    • 2016
  • As an era of nano science approaches, the understanding on the shape and optical properties of various materials in a nanoscale range is getting important more seriously than ever. Accordingly the development of high spatial-temporal-spectral resolution measurement tools for characterization of nanomaterials/structures is highly required. Generally, the various properties of sample can be measured independently, e.g. to observe the structural property of sample, we use the scanning electron microscopy or atomic force microscopy, and to observe optical property, we have to use another independent measurement tool such as photoluminescence spectroscopy or Raman spectroscopy. In the case of nano-materials, however, it is very difficult to find out the same position of sample at every different measurement processes, and the condition of sample can be changed by the influence of first measurement. The tip enhanced Raman scattering(TERS), which can simultaneously measure the two or more information of sample with nanoscale spatial resolution, is one of solutions of this problem. In this talk, I will present our recent nano Raman scattering data of graphene that measured by TERS and optimized tip fabrication method for efficient experiment.

  • PDF

Hyper-Rayleigh scattering(HRS)방법을 이용한 쌍극자와 팔중극자의 1차 초분극율$\beta$측정 (The First Hyperpolarizability $\beta$ measurement of dipoles and cotupoles by the Hyper-Rayleigh scattering technique)

  • 정미윤;강경민;전승준;조봉래;이명자;;이상해
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2002년도 하계학술발표회
    • /
    • pp.104-105
    • /
    • 2002
  • Hyper-Rayleigh scattering(HRS)방법을 이용하여 쌍극자와 새로이 합성된 팔중극자들의 1차 초분극율 $\beta$를 측정하였다. External reference 법을 이용하였고, reference 물질로는 잘 알려져 있는 쌍극자인 PNA를 이용하여 Disperse Red 1과 팔중극자들의 1차 초분극율 $\beta$의 값을 구하였다. 또한 HRS 의 세기뿐만 아니라 이들 물질의 two-photon induced fluorescence 스펙트럼을 측정하였다. 1차 초분극율 $\beta$값은, 먼저 시료로부터 scattering 된 신호를 파장변화에 따른 스펙트럼으로 측정하여 two-photon induced fluorescence를 뺀 순수한 HRS 신호만을 이용하고, 실험에 사용된 물질들은 532nm에서 흡수가 있어 second harmonic generation 신호가 시료에 의해 흡수가 되므로 흡수효과를 식 $I_{2{\omega}}$(obs)= $I_{2{\omega}}$(true) $e^{-{\sigma}lN}$ ---(1)를 이용하여 흡수에 의한 신호의 감소 효과를 보정하여 값을 구했다. (중략)

  • PDF